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Abstract

There has recently been a considerable amount of research into algorithmic traders that

learn [7, 27, 21, 19]. A variety of machine learning techniques have been used, includ-

ing reinforcement learning [20, 11, 19, 5, 21]. We propose a reinforcement learning

agent that can adapt to underlying market regimes by observing the market through

signals generated at short and long timescales, and by usingthe CHQ algorithm [23],

a hierarchical method which allows the agent to change its strategies after observing

certain signals. We hypothesise that reinforcement learning agents using hierarchi-

cal reinforcement learning are superior to standard reinforcement learning agents in

markets with regime change. This was tested through a marketsimulation based on

data from the Russell 2000 index [4]. A significant difference was only found in the

trivial case, and we concluded that a difference does not exist for our agent design.

It was also observed and empirically verified that our standard agent learns different

strategies depending on how much information it is given andwhether it is charged

a commission cost for trading. We therefore provide a novel example of an adaptive

algorithmic trader.
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Chapter 1

Introduction

The shortcomings of human traders have been demonstrated countless times. In most

cases, this does not have a far reaching effect: somebody might lose their savings,

somebody else’s promising career as an investment banker comes to an abrupt end.

But at times, the results can be catastrophic, such as the Wall Street Crash of 1929, or

the collapse of Barings Bank in 1992.

Human traders are poorly suited to the fast moving, highly numerical domain of

trading. Moreover, people are beset by a number of psychological quirks that can result

in poor trading decisions, such as greed, fear or even just carelessness. It is no secret

that computers are immune to these problems, and they are rapidly replacing humans

in all aspects of trading. In most countries, the days where traders yelled at each other

across exchange room floors are long gone.

However, computers do not have a clean track record either. The ‘Black Monday’

Stock Market Crash of 1989 is widely believed to have been caused or exacerbated

by program trading [30]. However, these program traders were merely implementing

strategies prescribed by humans. This suggests a problem; though we can replace

humans with computers, somebody still needs to program those computers. So long as

algorithmic traders use rigid predetermined strategies, people will be needed to create

and update those strategies, and human weakness will remainin the marketplace. The

reason we need people, is because for all their weaknesses, humans do have a huge

advantage: they are good at adapting and learning.

It is reasonable to ask whether the numerical advantages of algorithmic traders

could be combined with the adaptability of humans. After all, there are well established

machine learning techniques that allow computers to learn.In fact, there has recently

been considerable interest in algorithmic traders than learn [7, 27, 21, 19]. However,

1



Chapter 1. Introduction 2

we feel that most of this research fails to replicate the adaptability of humans. Though

some have created agents that learn strategies, few have asked why they these strategies

were learnt or how different strategies might be learnt in different situations. Moreover,

few have attempted to create agents that learn to adapt to market conditions or regimes,

In this dissertation, we propose an algorithmic trading agent which addresses these

issues. When designing our agent, we have made decisions that aim to minimise the

human influence on resulting strategies. For this reason we have chosen to design

a reinforcement learning agent, since reinforcement learning has been used in other

domains to learn strategies that humans would not find.

Other researchers have created algorithmic traders through reinforcement learn-

ing [20, 11, 19, 5, 21]. However, unlike in these approaches,our agent is designed to

adapt to underlying market regimes. We argue that identifying these regimes makes

the market environment better suited to reinforcement learning, which should improve

the performance of resulting strategies. We propose two ways in which the agent can

identify these regimes. Firstly, the agent can make observations which reveal long term

market trends. Secondly, the agent uses the CHQ algorithm [23], a hierarchical learn-

ing method which allows it to change its strategy after making certain observations.

The latter is the focus of our research, which explores the hypothesis that an agent with

hierarchical reinforcement learning can outperform a standard reinforcement learning

agent in a market with regime change.

Both standard and hierarchical agents were tested on a simulated market con-

structed using data from the Russell 2000 Index [4]. We show that our hypothesis

is true in a very trivial setup where neither agent makes any market observations. Un-

fortunately, we could not show any significant difference between the standard and

hierarchical agent in any other experiment. We conclude that our hypothesis cannot

be supported given our agent design, but reason that a difference might exist for an

improved agent design.

While testing our agent, it was noted that the agent would learn considerably dif-

ferent strategies when given more information about the market or charged a cost for

trading. Formal experiments were undertaken to investigate these effects, and it was

found that the agent shows some interesting adaptive behaviour. If the agent has more

information about the market, it either makes better tradesor trades more frequently.

If the agent is charged a cost for trading, then it trades lessfrequently. These are novel

results and provide an interesting example of an agent that replicates human adaptivity.
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1.1 Outline

The remainder of this dissertation is structured as follows: Chapter 2 provides the

background to our research, and contains a brief overview oftrading and reinforcement

learning. Previous research is discussed and used to motivate our hypothesis. Chapter

3 describes the market and broker components of the simulated environment which

our agent operates in. Chapter 4 contains detailed explanations and justifications for

each element of our agent design. Chapter 5 begins by describing our experimental

methodology, after which the results of a wide range of testsand experiments are

presented and discussed in depth. Chapter 6 concludes our research by tying together

our results, discussing the shortcomings of our method, proposing possible solutions,

and suggesting other avenues for future research.



Chapter 2

Background

In this chapter we give an overview of trading and reinforcement learning while simul-

taneously motivating our research. We review previous research involving machine

learning and algorithmic trading, focusing on approaches that have used reinforcement

learning.

2.1 Trading

A financial trader must interpret large amounts of information and make split second

decisions. Clearly, traders can use computers to gain an advantage, and so it is not

surprising that computers have had a prominent role in trading for decades [14]. Most

traders will use computational techniques on some level, even just as tools to assist in

decision making. Others allow computers to make decisions about specific aspects of

the trade, such as a system where a human trader decides what to trade, but a computer

decides when and how much to trade. Some companies use fully autonomous traders.

In order to motivate our research, we begin with a brief overview of the methods

used by human and algorithmic traders, and how they differ. We define a human trader

as a trader who makes all their own decisions, such as when andwhat to trade, but

may use computers to assist in the process. We define an algorithmic trading system as

one where a computer makes some decision about the trade. Algorithmic traders are

referred to asagents.

2.1.0.1 Human trading

Techniques used by human traders fall under one of two broad approaches: fundamen-

tal or technical analysis. Though a trader may prefer one approach, they are likely to

4



Chapter 2. Background 5

incorporate elements from the other.

2.1.0.1.1 Fundamental analysis Fundamental analysis views security prices as a

noisy function of the value of the underlying asset, such as performance of a company

or demand for a commodity [25]. If the underlying value can beestimated, then it can

be determined whether the security is under or overvalued. This information can be

used to predict how the security price will change. Similarly, if it is possible to predict

the effect that news has on the underlying value of an asset, then price changes can be

predicted. For instance, if a company announces record losses, then it is very likely

that both the underlying value and price of its stock will fall.

2.1.0.1.2 Technical analysis Technical analysis is based on the assumption that

future prices of a security can be predicted from past prices[25]. This view is justified

by noting that human traders are somewhat predictable, and claiming this results in

repeated patterns in security prices. However, this contradicts the Efficient Market

Hypothesis, which states that future prices are independent of all past and present

prices. Consequently, technical analysis has traditionally been dismissed by academics

[9], despite remaining popular among actual traders [29]. However, there is evidence

that technical analysis does work [17, 18], and many are beginning to suspect that the

market is not as efficient as assumed [15].

2.1.0.2 Algorithmic trading

The algorithms used by algorithmic traders are diverse, butgenerally based on meth-

ods used by human traders [14]. However, agents are less likely to use fundamental

analysis due to the difficulty of interpreting news articles. On the contrary, many use

technical analysis type rules, that humans struggle to follow due to slow reaction times

or psychological factors, such as panicking when the value of a holding falls rapidly.

Some agents implement highly mathematical strategies thathave no parallel in human

trading due to the extreme amount of computation required.

2.1.1 Machine learning and algorithmic trading

The machine learning community has recently shown much interest in the construc-

tion of agents that learn strategies, as opposed to the standard approach of agents with a

‘hand-coded’ strategy. The methods used by these agents need to be learn-able, which
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rules out the mathematically derived strategies used by some algorithmic traders. As

such, research has focused on agents that learn technical analysis type strategies. Some

approaches involve agents creating their own rules, while others have involved agents

combining rules to create strategies. Early approaches involved neural networks [24].

These are an obvious choice for learning technical analysistype rules, with their abil-

ity to map patterns to discreet signals. However, the opaquerules learnt by neural

networks means it is hard to characterise their performance.[26].

Dempster & Jones [7] criticised early research for focusingon developing a single

trading rule, unlike actual human traders who generally usea combination of rules. A

genetic algorithm was used to produce an agent that combinedrules and outperformed

agents exclusively using one rule. Subramanian et al. [27] showed that this method

can be extended to balance risk and profit, and developed an agent that could adapt to

different market conditions orregimes.

Economic regimes are periods of differing market behaviourthat may be part of the

natural market cycle, such as bull and bear markets, or may becaused by unpredictable

events, such as a change of government, bad news or natural disasters [12]. Although

human traders are certainly conscious of such regimes, mostresearchers have ignored

their presence.

Reinforcement learning has been used to train automated traders which map market

observations to actions, and though these methods have enjoyed success, none have

addressed regime change. Some approaches use technical analysis indicators as market

observations [9], while others use the historical price series [20, 11] or a neural network

trained on the price series [19, 8, 10, 5].

We argue that the performance of reinforcement learning algorithms in a market

environment can be improved if economic regime change is taken into account and

modelled as a hidden market state. We therefore propose to use a reinforcement learn-

ing algorithm designed for environments with hidden states: hierarchical reinforce-

ment learning. To motivate this argument, we begin with a review of reinforcement

learning.

2.2 Reinforcement learning

Reinforcement learning is an approach to machine learning where agents explore their

environment and learn to take actions which maximise rewards through trial and error.

Sutton & Barto [28] provide a comprehensive introduction tothe field, which we follow
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in this section.

The agent always exists in some states. It may choose some actiona which

takes the agent to a new states′ according to some transition probability distribution

P(s′|s,a). After taking an action, the agent receives a rewardRa
ss′. The agent has a

policy π(s,a) which gives the probability of taking actiona at states. The goal of the

agent is to learn an optimal policyπ∗ which maximises expected reward.

Agents maintain astate value function V (s) which estimates the reward expected

after visiting s, or a state-action value function Q(s,a) which estimates the reward

expected after taking actiona in states. Algorithms featuring state-action value func-

tions are known asQ-learning algorithms. GivenV or Q, a deterministicgreedy policy

π∗ can be generated by makingπ∗(s,a) = 1 for the action with the highest expected

reward. Calculating these rewards from a state value function V requires knowledge

of the transition probability distributionP and reward functionR, whereas an agent

with a state-action value functionQ can directly estimate these rewards. Q-learning is

therefore better suited to learning in environments whereP or R are unknown.

The greedy policyπ∗ is the optimal policy, provided that the value function from

which it is generated is optimal. However, in order to ensurethat the value functions

converge to optimal values, the agent must continue to sample all states or state-action

pairs. The agent must therefore explore, and so the policy used for learning must

contain random non-greedy actions.

However, this poses a problem; if the policy contains exploration, then the value

function will reflect this policy and not the greedy policy. There are two approaches

to reinforcement learning which handle this problem in different ways. Inon-policy

reinforcement learning, the amount of exploration is reduced over time, so that the

policy converges to the optimal policy. Inoff-policy reinforcement learning the agent

uses a sub-optimal learning policy to generate experience,but uses a greedy policy to

update the value function.

2.2.0.0.1 The Markov property An environment satisfies the Markov property if

the state transition probabilitiesP depend only on the current state and action. The

learning task is a Markov decision process if the environment satisfies the Markov

property. Convergence proofs for popular reinforcement learning algorithms assume

that the learning task is a Markov decision process [31, 6].
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2.2.0.0.2 Partially observable Markov decision orocesses (POMDPs) A learning

task is a partially observable Markov decision process (POMDP) if the environment

satisfies the Markov property, but the agent’s observationso do not always inform the

agent which environment state it is in. This occurs when the agent makes the same

observationo in distinct statess1 6= s2, . . . ,sn. This is known asperceptual aliasing.

The card games Poker and Bridge are POMDPs, as are many robot navigation tasks

where the robot’s sensors do not uniquely specify its location.

Though standard reinforcement learning is unable to learn optimal policies for

POMDPs, it is reasonable to ask whether some modified form of reinforcement learn-

ing can. As Hasinoff [13] remarks, humans are adept at solving POMDPs. If humans

can learn to play Poker and find their way out of labyrinths, then machines should be

able to do the same. Indeed, there has been a considerable amount of research into us-

ing reinforcement learning to solve POMDPs [13]. Though themethods used vary, the

general idea is torestore the Markov property by ‘revealing’ the underlying Markov

decision process.

2.2.0.1 Hierarchical reinforcement learning

HQ-learning is a hierarchical Q-learning algorithm developed by Wiering and Schmid-

huber [32] for learning policies for certain POMDPs. The algorithm features a number

of separate Q-learningsubagents. Only one subagent is active at once, and its policy

is used for control. When that subagent reaches its goal state, control is transferred

to the next subagent. Unlike standard reinforcement learning, the subagents have HQ-

tables, which estimate the expected reward of choosing particular goal states. The

agents use this to choose their goal state. If there are underlying hidden states which

require different policies, then a system with a subagent which is fitted to each hidden

state should obtain optimal performance. It follows that subagents should learn to pick

goal states that mark transitions between hidden states, asthis will maximise expected

reward. HQ-learning can be viewed as an elegant way of incorporating memory into

reinforcement learning. Though the subagents do not directly store memories, if a sub-

agent is currently active it follows that certain states must have been observed in the

past.

CHQ-learning is an extension of HQ-learning by Osada & Fujita [23] which allows

the sequence of subagents to be learnt and subagents to be reused. The HQ-tables

are modified to estimate the expected reward of choosing a particular goal-subagent

combination.
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2.2.1 Reinforcement learning and algorithmic trading

The use of Q-learning to develop a simple but effective currency trading agent was

demonstrated by Neuneier [20]. Gao & Chan [11] showed that the performance of the

agent can be improved by using the weighted Sharpe ratio as a performance indicator

instead of returns.

Dempster & Romahi [9] used Q-learning to learn a policy mapping combinations

of standard technical analysis indicators to actions. Thismethod was improved by

generalising the indicator combinations [10] and using order book statistics in place of

indicators [5].

Moody & Saffell [19] argued that reinforcement learning trading agents learn bet-

ter through a recurrent reinforcement learning (RRL) algorithm. This algorithm uses

a neural network to directly map market observations to actions, training the neural

network on experience. This bypasses the need for the state-action value function used

by Q-learning. Dempster et al. [8] used the actions from thismethod as ‘suggestions’

for a higher level agent which takes actions after evaluating risk.

Lee & O [16] designed a portfolio trading system with four Q-learning agents con-

trolling different aspects of trading, A complicated matrix was used to quantify the

price series. This method was later expanded on [21] in a system where multiple local

agents make recommendations about what to buy, which is usedas the state space for

a reinforcement learning agent which outputs the amount to allocate to each agent.

2.2.1.1 Restoring the Markov property in a market

While some previous researchers have acknowledged the non-Markov nature of mar-

kets, there has been no substantial discussion on how to restore the Markov property

in a market. Before attempting to restore the Markov property in a market, we must

ask whether the market actually has an underlying Markov decision process. Consider

the technical analysis assumption; that future prices can be predicted from past prices.

Clearly, then, the prices do not follow a Markov decision process. However, instead of

individual prices, consider a short series of historical prices. We can assume that there

is some limit on the effect prices have on the future. For example, we might assume

that future prices are independent of prices more than two weeks in the past. Then we

can say thatseries of prices follow a Markov decision process.

However, since prices are continuous, there will be infinitely many price series,

so we cannot directly use the price series as a state. One possible solution is to use
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a neural network to map price series directly to values or even actions, bypassing the

need for a discreet value function and circumventing the state space issue. This is the

approach used by Gao & Chan [11], Moody & Saffell [19] and in the later work of

Dempster et al. [8]. An alternative solution is to assume that it is possible to fully

capture the behaviour of a price series in certain discreet indicators, such as technical

analysis indicators. Then instead of using all the prices asthe state, discreet indicators

can be combined to get a discreet state. This is the approach used by Neuneier [20],

Lee & O [16, 21] and in the earlier work of Dempster et al. [9, 10, 5],

However, if we take regime changes into account, then restoring the Markov prop-

erty becomes more complicated. We assume that, under different regimes, price series

transition to other price series with different probabilities. Then an agent that has some

knowledge of the underlying regime will perform better thanan agent that does not.

Identifying market regimes requires price series at a lowerfrequency than needed to

predict short term movements (e.g. daily prices instead of hourly prices). If a neural

network is being used to restore the Markov property, then a lower frequency price

series could be presented to the network alongside the usualhigh frequency series.

Similarly, if indicators are being used, equivalent indicators for the lower frequency

price series can be included alongside the standard indicators.

However, traders may need to remember which states they haveseen in the past

in order to identify the underlying regime. For example, when some signal appears,

a trader might take it to mean that the market has now turned bearish and adjust its

strategy accordingly. If an agent can only see the current market observation, it is not

capable of this behaviour. The significance of this weaknessis highlighted by noting

that some signals may only appear for a single time step. Conversely, a hierarchical

reinforcement learning agent using the HQ-learning algorithm outlined above would

be capable of making these distinctions. For instance, if a subagent tailored to bullish

markets is active but observes the bearish signal, it would be capable of switching to a

subagent tailored to bearish markets.

Thus we propose to restore the Markov property in three steps. First, by using tech-

nical analysis indicators to compress the price series intodistinct observations. Then,

by adding long term technical analysis indicators to assistin the identification of un-

derlying regimes. Finally, we use hierarchical reinforcement learning so that the agent

can disambiguate underlying regimes based on signals. Though there is evidence that

neural network based approaches are superior [8], we use technical analysis indicators

to facilitate hierarchical reinforcement learning. This leads us to hypothesise thatre-
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inforcement learning agents using hierarchical reinforcement learning are superior to

standard reinforcement learning agents in markets with regime change.



Chapter 3

The simulation

In this chapter we describe the market and broker simulator.The market simulator

provides the continuous price series that the agent compresses into discreet observa-

tions. The broker simulator establishes a framework which determines the effects of

the agent’s actions. As such, it is necessary to outline the simulation before describing

the agent design.

3.1 The market simulator

Real data from the Russell 2000 Index [4] was used to simulatea market with a single

asset. The Russell 2000 index is related to the Russell 3000 index, which measures the

performance of the 3000 largest companies in the US. However, the Russell 2000 index

only considers the 2000 smallest securities from the Russell 3000 index, resulting in

an index which is free of the noise introduced by the largest companies. This has made

it popular among technical analysis traders.

Tick by tick data was preprocessed to create a price vector for each fifteen minute

interval. Each price vector contains the following information:

Open Price The price of the first trade in the interval

Low Price The lowest price of any trade in the interval

High Price The highest price of any trade in the interval

Close Price The price of the last trade in the interval

Ask Price The current ask price at the start of the interval

12
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Figure 3.1: Russell 2000 Index (2004-11-10 to 2007-11-15) 15 Minute Intervals

Bid Price The current bid price at the start of the interval

The open, low, high and close prices aremarket prices: prices at which trades

actually took place. The ask price is the lowest price at which some trader is willing to

sell stock, and the bid price is the highest price at which some trader is willing to buy

stock.

The close prices are plotted in figure 3.1. The market has beensplit into 24 datasets,

each which has been given a colour according to the followingscheme:

Bright Blue Rapidly rising segment: Close price is above open price and average

price

Soft Blue Rising segment: Close price is above open price but below average price

Soft Red Falling segment: Close price is below open price but above average price

Bright Red Rapidly falling segment: Close price is below open price andaverage

price

The colours are later used to investigate howrobust the agents strategies are: how

well they perform under different market conditions. The scheme is designed so that
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bright segments have very definite trends, while the soft segments have a noisier side-

ways trend. For the purposes of our research, we take these different segments to

represent different regimes. This is a simple approach; more sophisticated ways of

segmenting the market could certainly be used.

The first eight segments are assigned to the training dataset, the second eight to

the validation dataset and the final eight to the test dataset. The training dataset is

used for agent learning, while performance on the validation dataset is used to tweak

parameters. The test set is used to test performance on completely unseen data. The

Russell 2000 index between 2004 and 2007 is well suited to this sort of partition, since

each dataset contains diverse market conditions. A market segment of each colour is

found in each dataset, with the exception of soft blue and thevalidation set. This is far

more diverse than the FTSE100 index, which was originally investigated.

3.2 The broker simulator

The broker simulator determines how the agent can trade on the simulated market. For

the sake of realism, the broker simulates a contract for difference (CFD) service which

is offered by many real brokers [1, 3]. Traders take out a contract with the broker,

stating that the seller will pay the buyer the difference between the current price of

asset (e.g. a number of shares) and the price of the asset at some future time. The

trader can either be the buyer or seller in the contract, these are known respectively

as long and short positions. The price of the contract does not necessarily reflect the

price of the asset; one of the big attractions of CFDs is that they allow traders to take

positions on stock they could not actually afford. However,the trader will ultimately

end up paying or receiving the full increase or loss for the asset.

Traders must pay the broker commission for both opening and closing a position,

as well as a funding cost every day. A realistic commission price would be 0.25% of

the opening asset value [1]. Long positions accumulate funding costs on a day by day

basis, whereas short positions accumulate a funding dividend. Funding costs are based

on bank interest rates. This is because the broker has to borrow the money used to buy

the asset when the trader takes a long position, but can invest the money from selling

the asset when the trader takes a short position. Since we do not include bank interest

rates in our simulation, funding costs are ignored. We do however experiment with

comission prices.

We choose to use CFDs for two reasons. Firstly, they do not discriminate between
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long positions, which profit from rising prices, and short positions, which profit from

falling prices. Our agent therefore has the potential to make money in both rising

and falling markets. Secondly, CFDs can be closed at any time, which means we can

impose less restrictions on how the agent acts.

When an agent opens a long position, the ask price from the market simulator

is used as the current price, and when the position is closed,the bid price is used.

Conversely, short positions are opened at the bid price and closed at the ask price. The

agent’s indicators are based on close prices, so it has no knowledge of the bid or ask

price when it makes a trade. This difference between the price a trader sees when it

decides to open or close a position and the actual price the position is opened or closed

at is known asslippage.

Our simulation is not entirely realistic. It is assumed thatthe agent has no effect on

the market and can always open or close a position. These assumptions are partially

justified by restricting the agent to small trades. Creatinga fully realistic simulator

is not trivial and is beyond the scope of this investigation.However, our assumptions

are not unprecedented and the use of ask and bid prices means our simulation is more

realistic than simulations which only use market prices.



Chapter 4

Agent design

In this chapter we describe each aspect of the agent design: the observation space,

actions, reward function and algorithm.

4.1 Observation space

The agent’s observation space combines information about the agent’s current hold-

ings with information about the market. Note that we use the term ‘observation space’

instead of ‘state space’ as in standard reinforcement learning. This is a technical for-

mality. In standard reinforcement learning, observationsmap to unique states, so there

is no need for the distinction. However, we cannot guaranteethis will be the case in

our market environment, though we hope that observations map to certain states with

high probability after the Markov property has been restored.

At each time stept the agent has an observation vectorot = (ht ,mt ,et) whereht

is the agent’s holding state,mt is a market observation andet is a binary variable

indicating whethert is the last time step in an an episode. This binary variable is

included because the agent is forced to close its position atthe last time step in an

episode, and so the available actions are different whenet = 1.

4.1.1 Holding state

The holding stateht is a discreet variable taking valuesht ∈ {0, . . .8}. The value

informs the agent whether it has a long or short position and how well this position

is performing. The values are explained in figure 4.1 where profit is defined as open

price+ close price−(( open price× commission)+( close price×commission)).

16
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State Actions

0 Long: Profit over upper threshold Close Position, Hold Position

1 Long: Profit over zero Close Position, Hold Position

2 Long: Loss over lower threshold Close Position, Hold Position

3 Long: Loss below lower thresholdClose Position, Hold Position

4 Short: Profit over upper threshold Close Position, Hold Position

5 Short: Profit over zero Close Position, Hold Position

6 Short: Loss over lower threshold Close Position, Hold Position

7 Short: Loss below lower thresholdClose Position, Hold Position

8 No Position Open Long Position, Open Short Position

Figure 4.1: Holding States

The upper and lower thresholds are respectively positive and negative, and are in-

cluded to give the agent the potential to ‘wait’ until the profit moves outside these

thresholds before making a decision. Without these thresholds the agent tended to

trade too often. The thresholds are fixed parameters which must be chosen indepen-

dently of the learning algorithm; a good choice would dependon the market.

The distinction between profitable and lossy positions is also included to improve

learning. Even if the profits made vary wildly, closing a position when it is profitable

should usually result in a positive reward, and vice versa. Thus, even if the agent is

unable to converge on accurate values, it should be able to converge on values of the

correctsign. Without this distinction (i.e. just the upper and lower thresholds) the

agent had difficulty learning what to do immediately after opening a position.

Lee and O [16] use a similar threshold based representation,but most prior ap-

proaches simply inform the agent what it is holding.

4.1.2 Market observation

Three popular technical analysis indicators are used to generate discreet signals from

the historical price series: Bollinger Bands, RSI and the Fast Stochastic Oscillator

(KD). Each indicator is discussed in detail below, where we follow the descriptions

of Schwager [25]. Signals may be generated at both short and long time scales.

The short signals capture the behaviour of prices from the last day, while long sig-

nals capture behaviour from the last week. The vectorsms ⊆ {BBs
t ,RSIs

t ,KDs
t} and
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ml ⊆ {BBl
t ,RSIl

t ,KDl
t} give complete long and short term signals for a given time step.

Note thatms andml may be any subset of these indicators; the agent does not neces-

sarily use all of them.

The complete market observation is an vectormt of short and long signals. Several

combinations are experimented with:

S0L0 mt = /0 (no indicators)

S1L0 mt = (ms
t )

S2L0 mt =
(

ms
t−1,m

s
t

)

S0L1 mt =
(

ml
t

)

S1L1 mt =
(

ms
t ,m

l
t

)

S2L1 mt =
(

ms
t−1,m

s
t ,m

l
t

)

Agents using combinations with a long term signal are expected to perform well,

since they should be better at identifying underlying market regimes. In some combi-

nations the short term predictions for both the current and previous time step are used.

Agents using these combinations are also expected to perform well, since a number

of technical analysis rules are based on changing signals rather than the signals them-

selves. Such rules exist for all three chosen indicators. Note that we have not specified

these rules, but have given the agent the potential to discover them.

We restrict the agent so that each short or long term signal inits combination is

formed using the same technical analysis indicators (e.g.ms
t = {BBs

t ,RSIs
t} andml

t =

{BBl
t ,RSIl

t}). This gives our agent 46 different ways of generating market observations.

We investigate the performance of agents using many of the combinations, though

some are infeasible due to the resulting size of the observation space.

4.1.2.1 Bollinger Bands

Bollinger Bands are based on ann-period simple moving average, which is simply

the average value of some indicator over the lastn-periods (15 minute intervals in

our case). Moving averages smooth out short term price fluctuations and are typically

used to reveal long term price trends. The Bollinger Bands are two bands which are

constructed by plotting two standard deviations above and below the moving average.

The movement of the price in and out of the bands is thought to be informative.
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Figure 4.2: Bollinger Bands for the closing price from dataset segment 12 (Red: Short,

Blue: Long)

Signal Description

0 Market price above upper band

1 Market price between moving average and upper band

2 Market price between lower band and moving average

3 Market price below lower band

Figure 4.3: Scheme used to generate discreet signals from Bollinger Bands

A 20-period moving average is usually used by to plot Bollinger Bands for day by

day data. For our short indicator, we have used 28-periods, which is the median number

of intervals in a day for our dataset. For our long indicator,we used 140-periods, which

is 5×28: the median number of intervals in a week. Figure 4.2 plotsthe short and long

Bollinger Bands for the closing price from segment 12 of the dataset.

Figure 4.3 shows the scheme used to generate discreet signals from the Bollinger

Bands. The discretization is based on two popular technicalanalysis signals that in-

volve Bollinger Bands. Firstly, the market price moving above the upper band and

below the lower band are respectively considered to signal afall or rise in price. Sec-

ondly, the market price moving above and below the moving average respectively in-

dicate up and down trends. This should make it clearer why we have included signal
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Figure 4.4: RSI for the closing price from dataset segment 12 (Red: Short, Blue: Long)

combinations using observations from two consecutive timesteps. It allows agents to

act when signals change, which indicates that one of the bands or the moving average

has been crossed.

4.1.2.2 RSI

The RSI is a popular directional indicator which was introduced by J. Welles Wilder

in 1978. RSI stands for Relative Strength Index, but the longform is seldom used to

avoid confusion with other similarly named indicators. RSImeasures the proportion

of price increases to overall price movements over the lastn periods. It is given by

RSI =
ḡ

ḡ+ l̄

where ¯g and l̄ are the average gain and loss for then periods. The average gain is

computed by ignoring periods where the price fell, and average loss is computed anal-

ogously. Note that we are expressing RSI as a ratio, which differs from the standard

practice of expressing it as a percentage.

As with the Bollinger Bands, 28-periods are used for the short indicator and 140-

periods are used for the long indicator. Figure 4.4 plots theshort and long RSI for the

closing price from segment 12 of the dataset.

Wilder recommended using 0.7 and 0.3 as overbought and oversold indicators. The
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Signal Short RSI Indicator Long RSI Indicator

0 RSI ≥ 0.65 RSI ≥ 0.55

1 0.65≥ RSI ≥ 0.5 0.55≥ RSI ≥ 0.5

2 0.5≥ RSI ≥ 0.35 0.5≥ RSI ≥ 0.45

3 0.35≥ RSI 0.45≥ RSI

Figure 4.5: Scheme used to generate discreet signals from RSI

RSI falling below 0.7 is then considered to signal a falling market, while the RSI rising

above 0.3 is considered to signal a rising market. However, the variance of the RSI

depends on the period used, which can be clearly seen in the difference between the

curves in figure 4.4. Wilder’s recommendations of 0.7 and 0.3were for an RSI with

14-periods. In order to generate reasonable signals, different levels were used for our

28 and 140 period indicators: 0.65 and 0.35, and 0.5 and 0.45 respectively. These were

chosen so that the RSI moving outside these bounds was significant, but still likely

to occur at least once during a given dataset segment. Figure4.5 shows the resulting

scheme used to generate discreet signals. We also use 0.5 to partition the values since

it provides a useful directional indicator.

4.1.2.3 Fast Stochastic Oscillator (KD)

The Fast Stochastic Oscillator (KD) was developed by GeorgeC. Lane and indicates

how the current price of a security compares to its highest and lowest price in the last

n-periods. It is derived in two steps. Letpmax andpmin be the highest and lowest prices

in the lastn-periods and letpt be the current price. Then

K =
pt − pmin

pmax− pmin

Again, a ratio is used instead of the standard percentage. Note that ifpt = pmin then

K = 0, while if pt = pmax thenK = 1. K can be thought of as representing ‘how far’

the current price is between then-period high and low. The Fast Stochastic Oscillator

KD is simply a smoothed version ofK, and is defined as them-period moving average

of K, wherem≤ n. The indicator has the effect of preserving the peaks and dips in the

price series, while compressing it between 0 and 1.

For our short indicator, 28-periodK and a 4-period (one hour) moving average are

used. For our long indicator, 140-periodK and a 28-period moving average are used.
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Figure 4.6: KD for the closing price from dataset segment 12 (Red: Short, Blue: Long)

Signal Description

0 KD≥ 0.8

1 0.8≥ KD≥ 0.2

2 0.2≥ KD

Figure 4.7: Scheme used to generate discreet signals from KD

Figure 4.6 plots the short and long KD for the closing price from segment 12 of the

dataset.

Lane recommended that 0.2 and 0.8 are used as oversold and overbought levels.

These levels are used in our scheme to generate discreet signals from KD, shown in

figure 4.7.

4.2 Actions

The actions available to an agent at timet depend on its current holding state and

whethert is the final interval in the episode. If the latter is true, theagent is forced to

close any position it has. Otherwise, if the agent has a position it may hold it or ‘invert’

it by closing that position and opening the opposite position (e.g. long if the original
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Final Time Step? Holding States Actions

Yes {0, . . . ,7} Close Position

No {0, . . . ,7} Invert Position, Hold Position

No {8} (No position) Open Long Position, Open Short Position

Figure 4.8: Actions

position was short). If it has no position it may open either along or short position.

This is shown formally in figure 4.8.

The agent begins in the ‘no position’ state, but cannot return there; the agent must

always hold a position. This is partly due to learning issues, but also reflects the idea

that either going long or short must be as good or better than doing nothing. Taking an

action causes the agent to move forward one time interval. Cash is completely ignored

except for measuring performance; it is assumed that the agent always has enough cash

to open a position or cover its losses.

The agent simply opens and closes positions on the minimum amount of shares

(1). This is done to justify two assumptions that were made tosimplify the simulation:

that the agent does not effect the market, and that the agent can always open and close

its position. Trading multiple stocks would also introducea new problem; how to best

time the trades. We want to ignore this issue and focus on basic performance. However,

it is not unreasonable to say that a strategy that is profitable trading on one stock can be

adapted to trading multiple stocks and remain profitable. Other research has typically

concerned similar small positions, with the exception of the work of Lee & O [16, 21].

4.3 Reward functions

The agent only receives reward for closing a position, whichmeans the agent must

have enough lookahead so that it learns to associate openinga position with the re-

ward it later receives for closing it. The algorithm is designed with this in mind. We

experimented with three different reward functions.

4.3.1 Profit

Profit is the obvious reward function, as it is generally a good idea to reward reinforce-

ment learning agents with whatever quantity is being maximised. Additive profits are
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used, since the fixed ‘smallest position’ structure is beingused and so the agent is not

reinvesting any profits into additional positions.

4.3.2 Profit Made Good

The Profit Made Good indicator is based on the Sharpe Ratio indicator. Using only

profit as a reward function is often criticised, since practical trading systems need

to take risk into account. A popular alternative to profit is the Sharpe Ratio which

measures the returns per unit of risk. It is defined as

SR =
E(R−R f )
√

var(R)

whereR is returns andR f is the return of some risk free asset. Since we ignore the

existence of risk free assets, the Sharpe ratio becomes.

SR =
E(R)

√

var(R)

However, our agent can potentially make very rapid trades, even switching posi-

tions in consecutive intervals. The Sharpe Ratio is not defined for a single return, since

variance is zero. Moreover, the Sharpe Ratio tends to be unnaturally high or low for a

small number of returns. While it is a good measure for long term performance, it is

a poor choice for providing immediate reward for small trades. This motivated us to

design the Profit Made Good indicator.

PMG =
E(R)

E(|R|) =
∑R

∑ |R|
Intuitively this can be thought of as the ratio of returns to return movement. If all

returns are negative, thenPMG =−1, if the sum of returns is zero thenPMG = 0 and if

all returns are positive thenPMG = 1. It is also well defined for a single return. It still

suffers from unnaturally high or low values for a short number of returns, but since it

is bounded between -1 and 1, this is less of an issue. It also requires less computation.

PMG is related to the Sharpe Ratio, as both express some relationship between

returns and asset volatility. It was informally observed that they appear to approach an

approximately linear relationship for a large number of returns.

4.3.3 Composite

The composite reward function is defined as the product of profit and Profit Made

Good:
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1. For each episode

(a) Make observation and choose starting action

(b) Do

i. Take action, get reward and new observation

ii. Choose the next action and find the optimal action

iii. Compute optimal Q-value using the optimal action

iv. Set eligibility trace for current observation-action pair

v. Use the optimal Q-value to update the Q-values of eligiblestate-action

pairs

until episode terminates

Figure 4.9: Sketch of Watkins-Q algorithm

pro f it×PMG

This is intended to provide a compromise between the two indicators.

4.4 The algorithm

The algorithm is a hybrid of the Watkins-Q algorithm given bySutton & Barto [28]

and the CHQ algorithm given by Osada & Fujita [23].

4.4.1 The Watkins-Q algorithm

The Watkins-Q algorithm is an off-policy Q-learning algorithm with eligibility traces.

Eligibility traces are a way of dealing with temporal creditassignment. A sketch of

the algorithm is given in figure 4.9 and a pseudo code version with more detail is given

in figure 4.10. Visited states are given a trace which is decayed at every time step.

The trace indicates how eligible a state is for receiving rewards at the current time

step. Effectively, eligibility traces allow state-actionpairs to receive reward for future

actions. This sort of ‘lookahead’ is important in our agent design; recall that the agent

only receives reward for closing trades. Thus, it needs to beable to link the reward

received when the trade is closed to the action of opening it.
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Figure 4.10: Watkins-Q algorithm in pseudo code (from [28])

4.4.2 The CHQ algorithm

The CHQ algorithm is a modification of the HQ-learning algorithm proposed by Wier-

ing and Schmidhuber [32]. HQ-learning uses a system withM subagentsC1,C2, . . . ,CM

that learn through conventional Q-learning. However, eachsubagent also has a HQ-

tableHQi .

Learning is performed on episodes witht = 1,2, . . . ,T discreet time steps. Sub-

agentC1 is activated at the beginning of the episode and greedily chooses a subgoalg

from its HQ-table. It follows a policy based on its Q-value functionQi until subgoal

g is reached, at which point control is transferred to the nextagentC2. This continues

until the episode terminates whent = T , then Q and HQ-values are updated. Only one

subagent is active at a given time step.

The CHQ algorithm proposed by Osada & Fujita [23] simply modifies the HQ-

learning algorithm so that subagents pick the next subagentin addition to the goal.

Consequently, CHQ-learning can deal with repetitive tasksthat HQ-learning cannot.

A sketch of the algorithm is given in figure 4.11. Unlike the Watkins-Q algorithm, the

agent does not immediately learn from experience. This takes place through a form of

batch updating at the end of each episode. These two learningparadigms are known

as online and offline updating. This should not be confused with on and off policy

algorithms; both algorithms are off-policy. A pseudo code version of the algorithm is

given in figure 4.12. The following conventions are used:t = time step,i = ith active

subagent,o = observation,a = action,s = subagent,g = goal,n = next subagent andr
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1. For each episode

(a) Make observation and choose starting action, goal and next subagent

(b) Do

i. Take action, get reward and new observation

ii. If the new observation matches the goal state, swap to newsubagent

iii. Choose the next action

until episode terminates

(c) Update Q-values

i. Calculate optimal Q-value at each time step

ii. Update Q-values according to these optimal Q-values

(d) Update HQ-values

i. Calculate optimal HQ-value for each subagent used

ii. Update HQ-values according to these optimal HQ-values

Figure 4.11: Sketch of CHQ-algorithm
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1. Initialise all values inQi andHQi to zero for eachi ∈ {1, . . .M}

2. Repeat for each episode

(a) Lett = i = 1

(b) Let si = 1

(c) Choosegi andni greedily fromHQsi(g,n).

(d) While t ≤ T

i. Select actiona greedily fromQsi(ot,a).

ii. Do a, get rewardrt and new observationot+1

iii. If ot = gi

• si+1← ni

• i← i+1

• Choosegi andni greedily fromHQsi(g,n)

iv. t← t +1

(e) Update Q-values

i. Find the ideal Q-valuesQt

A. QT ← rt

B. For eacht = 1, . . . ,T −1

• Qt ← rt + γ((1−λ)maxa(Qst(ot+1))+λQt+1)

ii. ThenQst (ot ,at)← (1−αQ)Qst(ot ,at)+αQQt

(f) Update HQ-values LetsN be the last subagent in the episode

i. Find the ideal HQ-valuesHQi. Let Ri = ∑ti+1−1
t=ti γt−tirt .

A. HQN ← RN

B. For eachi = N−1, . . . ,1

• HQi← Ri + γti−1−ti((1−λ)maxg,n(HQsi(g,n))+λHQi+1)

ii. ThenHQsi(gi,ni)← (1−αHQ)HQsi(gi,ni)+αHQHQi

Figure 4.12: CHQ algorithm in pseudo code
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1. For each episode

(a) Make observation and choose starting action, goal and next subagent

(b) Do

i. Take action, get reward and new observation

ii. Choose the next subagent and find the optimal next subagent

iii. Choose the next action and find the optimal action

iv. Compute optimal Q-value using the optimal action and subagent

v. Set eligibility trace for current observation-action-subagent triple

vi. Use the optimal Q-value to update the Q-values of eligible state-

action-subagent triples

vii. If the subagent has changed, choose new goal and next subagent

until episode terminates

(c) Update HQ-values

i. Calculate optimal HQ-values for each subagent used

ii. Update HQ-values according to these optimal HQ-values

Figure 4.13: Hybrid Algorithm Sketch

= reward. We abuse the notation and use bothsi andst , where the former means theith

active subagent and the latter means the subagent active at time t.

4.4.3 Hybrid algorithm

In early informal experiments, both the Watkins-Q and CHQ algorithms were used

to train non-hierarchical agents. CHQ was used with a singlesubagent. The aim of

this experimentation was to gain some idea of the suitability of the algorithms in our

market environment.

Agents trained with the Watkins-Q algorithm learnt much faster than those trained

with CHQ, which we assumed to be a result of the online learning in Watkins-Q. This

motivated us to develop an online version of the CHQ algorithm. This is a reasonable

endeavour; Wiering & Schmidhuber [32] remarked that onlineversions of HQ-learning

should work. A fully online algorithm would be impractically complicated, so we

developed an algorithm where Q-learning is online, but HQ-learning is offline. This
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is a reasonable compromise, since Q-values are used more frequently, and thus are

more likely to benefit from faster, online learning. A sketchof the algorithm is given

in 4.13. Note that the eligibility traces function is changed to map to state-action-

subagent triples.

The algorithm was also modified to make it better suited to ourmarket simulation.

Instead of goal observationsg, the agent maintains some partition of the observation

space{G1, . . . ,Gn}. The agent reaches its goal when it observes any observationg in

its chosengoal set G. The partitions ensure that there is a good chance of goals being

reached in a given dataset segment, which would not be the case if single observations

were used as goals. Three partitions are used in our experiments:

• Gi contains all observations where holding stateht = i

• Gi contains all observations where short market signalms
t = i

• Gi contains all observations where long market observationml
t = i

Another modification was made to the algorithm, so that observing a goal state

g ∈ G does not ‘count’ as reaching the goal unless some other observationo /∈ G has

been observed since the subagent assumed control. This prevents two subagents with

the same goal alternating at every time step.

We also found it necessary to decay the learning parameterαQ in order to ensure

convergence. Convergence is otherwise poor, which we assume to be caused by the

non-Markov nature of the market, even after our attempts at restoring the Markov prop-

erty. The downside to decaying the learning parameter is that early experience tends

to have a disproportionate effect on the final policy learnt by the agent. However, the

variation caused by this is limited, so it is possible to pickcombinations of parameters

that cause the agent to converge to good policieson average. The parameterαdecay

controls the rate of decay. The separate learning rate for the HQ-values,αHQ is not

directly decayed, but instead tied toαQ by the parameterαH :

αHQ = αQαH

A pseudo code version of the complete hybrid algorithm is given in figure 4.14.

The hierarchical structure significantly complicates the selection of the optimal action.

A list of active eligibility tracese is maintained to reduce computation time.
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1. Initialise all values inQi andHQi to zero for eachi ∈ {1, . . .M}

2. Repeat for each episode

(a) Lett = i = 1

(b) Let st = 1

(c) ChooseGi andni greedily fromHQst (g,n)

(d) Let G∗ andn∗ be the goal-set and next subagent maximisingHQst(g,n)

(e) Leta1 be the action maximisingQs1(o1,a).

(f) While t ≤ T

i. Do at , get rewardrt and new observationot+1

ii. If ot+1 ∈Gi andot /∈ g thenst+1 = ni otherwisest+1 = st .

iii. If ot+1∈G∗i andot /∈ g∗ thenQ∗= Qn∗ ands∗ = n∗, otherwiseQ∗= Qt

ands∗ = st.

iv. Chooseat+1 greedily fromQst+1(ot+1,a)

v. Let a∗ be the action maximisingQ∗(ot+1,a).

vi. If t = tmax, δ ← r − Qt(ot ,at) otherwiseδ ← r + γQ∗(ot+1,a∗)−
Qst (ot,at).

vii. Sete(ot ,at,st)← 1 and placeot ,at ,st on et .

viii. For all ô, â, ŝ onet .

A. Qŝ← Qŝ(ô, â)+αδe(ô, â, ŝ).

B. If at+1 = a∗ andst+1 = s∗, then

• e(ô, â, ŝ)← γλe(ô, â, ŝ).

• If e(ô, â, ŝ) > 0.01, place ˆo, â, ŝ onet+1.

ix. If ot+1 ∈Gi andot /∈Gi

A. i← i+1

B. ChooseGi andni greedily fromHQst+1(g,n)

C. Let G∗ and n∗ be the goal-set and next subagent maximising

HQst+1(g,n).

x. α← α ·αdecay

xi. t← t +1

(g) Update HQ-values (As in CHQ algorithm)

Figure 4.14: Hybrid Algorithm
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4.4.4 Training procedure

In the context of our trading simulator, an episode is a complete sweep through a

segment of the dataset. During training, the agent cycles through segments 0-7 of the

complete dataset, then repeats the process. Multiple sweeps over the same epsiodes

are necessary to provide the agent with sufficient experience. The possibility of the

agent over-fitting to the training dataset is hoped to have been reduced by splitting it

into segments with different market conditions.



Chapter 5

Experiments

We begin this chapter by outlining the methodology used in our experiments. We

explain how performance is measured and describe which statistical considerations

are made. The remainder of the chapter covers a large number of tests that are split

into two sections:parameter tests andexperiments. The former are used to identify

values for parameters that were required for the algorithm,but are neither interesting or

relevant to the hypothesis. These tests involve looking at abroad range of parameters

in little depth.

The experiments are used to investigate aspects of our agentthat produce results

which are interesting or relevant to the hypothesis. There are five in total, looking at

the performance of the hierarchical agent, the combinationof technical analysis indi-

cators, the combination of long and short signals, commission rates and performance

on unseen data. The presentation and discussion of results are interleaved for both

parameter tests and experiments, and so there is no separate‘results’ discussion.

5.1 Methodology

5.1.0.0.1 The Buy and Hold Strategy We sometimes refer to thebuy and hold

strategy and use it as a control in some of our experiments. This is a simple strategy

where a long position is taken at the start of the trading period and closed at the end.

This tends to make money because market prices tend to rise over time. A good trading

strategy should at least be able to do better than the buy and hold strategy.

33
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5.1.1 Measuring performance

The performance of an agent with given parameters is measured through several indi-

cators. To evaluate the effect that parameters have on agentperformance, a number of

agents are trained with the same parameters, and the values of indicators are averaged

over all the agents.

5.1.1.1 Indicators

5.1.1.1.1 Profit Profit is our primary indicator, since profit is what any trader ulti-

mately seeks to maximise. In the majority of parameter tests, this is the only indicator

used.

5.1.1.1.2 Number of trades The number of trades made by an agent gives us a

rough idea of what sort of strategy it is using. It if is only trading once per market

segment, then it must be using some sort of ‘buy and hold’ or ‘sell and hold’ strategy.

The value of other indicators should be questioned if the number of trades is low. If

the agent only trades a few times per market segment, then itsstrategy has not been

tested enough to say much about its performance.

5.1.1.1.3 Long/short profit Long/short profit compares the profit made from long

and short positions. The numbers should at least both be positive, but it is expected

that profit made from short positions is smaller. This is because our price series is not

symmetrical and rises more than it falls. Making money off short positions is therefore

harder since the timing of closing the position is critical.Long positions should ideally

be closed at ‘peaks’ in the market. It is not critical if a peakis missed, because the

price generally increases over time and the missed peak willlikely be surpassed. Short

positions should ideally be closed at ‘troughs‘. However, if a trough is missed, there is

less chance that the market will return to this low point in the future.

5.1.1.1.4 Maximum down-draft Maximum down-draft measures the biggest poten-

tial loss made by the agent on any single position. Potentialloss is calculated at every

time step, and measures how much of a loss (or profit) would be made if the agent

closes its position at that time step. Note that this is different from actual loss; the

agent probably didn’t close the position at that time step. Maximum down-draft is

therefore ‘worst case’ loss and provides an idea of how riskythe strategy is. As a rule
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of thumb, the absolute maximum down-draft should be less than the profit that the

agent ultimately makes.

5.1.1.1.5 Number of subagents used The number of subagents used is only rel-

evant to the hierarchical agent, and tells us how often the subagents are switching

control. It is particularly significant if a single subagentis used; this means that the

hierarchical agent is using a standard reinforcement learning policy.

5.1.1.2 Convergent policy vs. best policy

In section 4.4.3 we explained how we artificially decay the learning parameterα to en-

sure that the agent converges on a policy; we call this theconvergent policy. However,

there is no guarantee that the agent converges on the optimalpolicy, or even the best

policy it finds while it is learning. When choosing parameters in the parameter tests,

we measure the performance of the convergent policies. Thisis because the parameter

tests are intended to optimise the complete learning algorithm. However, when run-

ning experiments, we focus on the performance of the best policies. This is because

we are interested in how well the agent can perform with different parameters, so we

cannot justify ignoring the best policies simply because the algorithm fails to converge

on them. In some experiments, we compare the performance of the convergent and

best policies to provide an idea of how convergence could be improved.

5.1.1.3 Performance on training, validation and test sets

In practice, the performance of agents on the training and validation datasets was often

found to be better on the validation dataset. This is due to more favourable market

conditions in the validation dataset. This indicates that the agent is not over-fitting to

the training dataset, and since it is desirable to evaluate the agent on as wide a range

of market conditions as possible, we usually give indicators that measure performance

on a combined training and validation dataset.

Performance on the test dataset is only measured in an experiment which is used to

investigate the performance of various policies on unseen data.

5.1.1.4 Commission costs

The introduction of commission costs introduced a lot of noise into the agents’ per-

formance which made it difficult to compare the effects of different agent designs and
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parameters. For this reason, commission has been ignored outside of a single experi-

ment which directly investigates its effect.

5.1.2 Statistical considerations

Several agents with the same parameters are not guaranteed to have the same best

or convergent policy. In fact, the performance of policies found by identical agents

is considerably noisy. However, we can show that, on average, certain parameters

produce different levels of performance. A number of agentswith the same parameters

are trained using different random seeds. The policy learntby each agent can be seen

as a sample of the population of all policies that agents withthese parameters can

learn. Thus, by taking the mean of a given performance indicator for each agent, we

can obtain a mean value for agents with the design and parameters. We use standard

error to estimate error in the mean. This is defined as

σ√
n

whereσ andn are standard deviation and number of samples. Since we use sample

sizes of at least 32, we can be 95% confident that the true valueof the mean lies

within approximately two standard errors of the sample mean[2]. As such, error bars

showing two standard errors are included on many of our graph. If the error bars for

two populations of agents with different designs and parameters do not overlap, there

is a statistically significant difference between the two populations. If the error bars

do overlap, we cannot be sure that there is no statistically significant difference. In our

discussion we use the word ‘significant’ to mean statistically significant.

5.2 Parameter tests

In this section we identify good values for the agent’s parameters so that we can be sure

it is achieving reasonable performance in our experiments.The agent requires so many

parameters that an exhaustive search through all combinations would be impractical.

As such, the parameters are broken into groups such that the effect of each parameter is

roughly dependent on the other parameters in its group and independent of parameters

in other groups.

Convergence parameters (Note thatαdecay is set so thatα ≈ αtarget at the end of

training.)
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α1 Starting value of alpha

αtarget Target value of alpha at end of training

αH (Hierarchical agent only) Hierarchical alpha factor

ε Percentage of exploratory actions

Iterations

Iteration parameter Number of iterations whenα = αtarget

Learning parameters

γ Discount factor

λ Degree of eligibility

Behaviour parameters

Reward function Profit, Profit Made Good or Composite

Trading parameters

Lower threshold Lower threshold for determining holding state

Upper threshold Upper threshold for determining holding state

These groupings are by no means rigorous. Good parameters were found for the

first group, then used to find parameters for the second group,and so forth. Placeholder

parameters were used for parameters that had not yet been found; these were ‘guesses’

based on observations in informal experiments. Two sets of parameters were obtained:

one for the standard reinforcement learning agent, and the other for a hierarchical

agent. We cannot claim that the resulting parameters are perfect, but they should be

sufficient for meaningful comparisons.

The initial ‘placeholder’ parameters were set as follows:

• γ = 0.5

• λ = 0.75

• Iterations: 64

• Reward Function: Profit Made Good
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α1 0.5 0.3 0.1

58.82 65.18 58.05

αtarget 0.1 0.001 0.00001

41.13 69.58 71.34

ε 0.5 0.3 0.1

32.10 53.33 96.93

Figure 5.1: Average profit of agents trained with various convergence parameter values

• Upper Threshold: 1

• Lower Threshold: 1

Note that the convergence parameters are absent since they were the first to be

chosen. The market observation space was fixed so that the agent had two short and

one long Bollinger Band signals. We wanted to test parameters on a large state space,

but not so large that the experiments would require too much computation time. When

testing hierarchical agents, two identical subagents wereused, since this matches the

setup used in our experiments.

5.2.1 Convergence tests

A sample of 32 agents were trained for each combination of thefollowing parameters.

• α1 ∈ {1.0,0.5,0,25}

• αtarget ∈ {0.1,0.001,0,00001}

• αH ∈ {0.125,0.25,0.5,1,2,4,8} (Hierarchical agent only)

• ε ∈ {0.5,0.3,0.1}

5.2.1.0.1 Standard agent performance The mean profit for each parameter value

was averaged over the values of the other parameters. These averages are shown in

figure 5.1. We can pick out good parameter values by looking atthese averages.

The initial value of alphaα1 appears to have little effect, though the value of 0.3

stands out as the best choice. We can see that the target valueαtarget should not be 0.1,

but there is little difference between 0.001 and 0.00001. The lowest value for epsilon

ε = 0.1 is clearly the best choice. This makes sense intuitively, since agents that explore
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Figure 5.2: Performance of chosen parameter combination (red) compared to other

parameter combinations

too much may never hold positions long enough to experience holding states above or

below the thresholds. Thus,α1 = 0.3, αtarget = 0.001 andε = 0.1 would be a good

choice of parameters.

However, we have been treating the effects of the parametersas independent, so

we should also consider the performance of the parameters incombination. Figure 5.2

shows the profit made by all parameter combinations± two standard errors. The se-

lected combination is marked in red. This gives us a general idea of how the perfor-

mance of our chosen parameter combination compares to otherpotential combinations.

It is acceptable; it overlaps with the other ‘top’ combinations and not with any of the

worst combinations.

5.2.1.0.2 Hierarchical agent performance The same approach was used to pick

convergence parameters for the hierarchical agent. We expected that good convergence

parameters for the hierarchical agent may differ from the standard agent, since they

also have a role in the hierarchical part of the algorithm. The average profit for each

parameter value is shown in figure 5.3.

Indeed, the effect of the parameters seems to differ for the hierarchical agent. It

appears that 0.5 is the best choice for the initial learning rateα1 while 0.001 stands out

as the best target learning rateαtarget . The hierarchical learning rate factor does not

appear to have much effect. Finally, the low value of epsilonε, 0.1 is clearly the best
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α1 0.5 0.3 0.1

69.07 64.64 52.32

αtarget 0.1 0.001 0.00001

58.37 67.52 58.14

αh 0.125 0.25 0.5 1 2 4 8

61.60 59.57 65.39 65.16 62.86 56.86 57.97

ε 0.5 0.3 0.1

26.56 56.55 100.92

Figure 5.3: Average profit of hierarchical agents trained with various convergence pa-

rameter values
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Figure 5.4: Performance of chosen parameter combination (red) compared to other

parameter combinations
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Figure 5.5: Mean profit against iterations for iteration parameter ∈ {64,128,256,512}
(lightest: 64, darkest: 512)

choice, as with the standard agent. Based on this,α1 = 0.5, αtarget = 0.001,αH = 2

andε = 0.1 would be a good choice of parameters. Again, we do a rough comparison

again other combinations in figure 5.4. Our chosen combination looks acceptable.

5.2.2 Iteration tests

The iteration parameter controls the rate at which the learning rate decays so that the

target value of alphaαtarget is reached at the final iteration. This is independent of the

actual number of iterations used for training. A sample of 32agents was trained for

each of the following values of the iteration parameter.

• Iteration parameter∈ {64,128,256,512}

We used 512 iterations for training regardless of the iteration parameter.

The purpose of this test is threefold. Firstly, it gives us some idea of how the

agent converges on a good policy. Secondly, it lets us know ifit worth letting the

learning rate decay slower so that it reachesαtarget after more iterations. Finally, it lets

us know if there is any benefit to letting the agent continue learning after the target

learning rate has been reached. Figure 5.5 plots the mean profit on the training and

validation sets against the number of iterations. The lightest lines correspond to an

iteration parameter of 64 while the darkest lines correspond to 512. The upper and

lower lines respectively show the mean performance± two standard errors; the actual

means are not plotted. The graphs are truncated to 128 iterations since performance

did not change substantially after this point.
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Figure 5.6: Mean profit for values of γ (left) and λ (right)

The noisy performance early in the plots shows that the agents have difficulty learn-

ing, which suggests that our environment is not approximating a Markov process. If

using hierarchical reinforcement learning helps restore the Markov property, we would

expect to see less noise in the right graph, which is the case.However, we have not

investigated other factors that may be causing the difference.

In both graphs, the number of iterations seems inversely proportion to the perfor-

mance at convergence. However, the standard error lines overlap considerably, so we

cannot say that there is any significant difference between the performance of agents

with different iteration parameters.

In the absence of any significant difference, it is best to stick with an iteration pa-

rameter of 64 to minimise computation time. Since the lines for an iteration parameter

of 64 reach their convergent behaviour very quickly, we can also keep the number of

iterations at 64.

5.2.3 Learning parameter tests

A sample of 32 agents was trained for each combination of the following values ofγ
andλ.

• γ ∈ {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}

• λ ∈ {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}

5.2.3.0.3 Standard agent performance The mean profit for each value ofγ was

averaged over the values ofλ and plotted in the plot on the left of figure 5.6. The
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Figure 5.7: Mean performance of γ and λ combinations
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Figure 5.8: Mean performance for values of γ (left) and λ (right)

right plot is the equivalent plot for Lambda. We can get an idea of which values

of these parameters are good by looking at these plots. Thereis a definite ‘peaked’

structure in both plots, withγ peaking at 0.6 andλ peaking at 0.7. This reflects our

intuition that both parameters should be high to provide theagent with the ability to

‘lookahead’. Note that performance is poor forλ = 0, which justifies our decision

to use eligibility traces. Based on these plots,γ = 0.6 andλ = 0.7 would be a good

parameter combination.

Since we are only comparing two parameters, we can produce the contour plot

seen in 5.6. Warm and cold colours respectively indicate regions of good and poor

performance. If we look whereγ = 0.6 andλ = 0.7 we see a low point between two

regions of better performance. Increasingλ to 0.8 brings us on to one of these better

regions. Thereforeγ = 0.6 andλ = 0.8 are our chosen learning parameters.



Chapter 5. Experiments 44

Lambda

G
am

m
a

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.9: Mean performance of γ and λ combinations
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Figure 5.10: Mean performance of reward functions for standard (left) and hierarchical

(right) agents

5.2.3.0.4 Hierarchical agent performance Equivalent plots were created for the

hierarchical agent. As with the convergence parameters, weexpected that good pa-

rameter values would differ for the hierarchical agent, since bothγ andλ have a role in

the hierarchical component of the algorithm. Indeed, the plots in figure 5.8 have less

pronounced peaks than in figure 5.6. The peak value ofγ is at 0.5, whileλ appears to

peak somewhere between 0.4 and 0.7.

The contour plot in figure 5.8 allows us to pick a more precise value forλ. Assum-

ing we wantγ to be 0.5, then we can chooseλ = 0.7 so that our parameter combination

falls in the region of good performance on the right of the plot.
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5.2.4 Reward tests

A sample of 128 agents was trained for each reward function described in section 4.3:

profit, profit made good (PMG) and composite. The bar graphs infigure 5.10 show the

profit made by the standard and hierarchical agents on the training and validation sets.

It appears that PMG is the best reward function, and profit is the worst. However, if we

take error bars into account, the only thing we can be certainof is that PMG is better

than profit for the standard agent. This may be because PMG takes risk into account

while profit does not. Gao & Chan [11] noted that the Sharpe ratio is a better reward

function than profit for this reason. Alternatively, PMG maybe better because it is

bounded between -1 and 1, and therefore less noisy than either profit ot the composite

function. Whatever the case, we chose to use PMG in our other experiments, since

it is the only reward function that we can say has an advantageover another reward

function,

5.2.5 Threshold tests

A sample of 32 agents was trained for each combination of the following lower and

upper thresholds:

• Lower Threshold∈ {0,1/256,1/128,1/64,1/32,1/16,1/8,1/4,1/2,

1,2,4,8,16,32,64,128,256,512}

• Upper Threshold∈ {0,1/256,1/128,1/64,1/32,1/16,1/8,1/4,1/2,

1,2,4,8,16,32,64,128,256,512}

5.2.5.0.5 Standard agent performance The same approach used to select values

for γ andλ was used to select thresholds. The mean profit for each lower threshold was

averaged over the upper thresholds and plotted in the plot onthe left of figure 5.11.

The right plot is the equivalent plot for the upper thresholds.

Both plots reveal interesting patterns. In both cases, thresholds of zero give sub-par

performance, which justifies using thresholds. Low lower thresholds give bad perfor-

mance, while moderate thresholds perform best and higher thresholds give average

performance. Upper thresholds between 1 and 64 result in thebest performance, with

the exception of 16, which results in extremely poor performance.

The presence of this ‘valley’ is unexpected. It might be thatthere exist fundamen-

tally different strategies that agents will only learn withcertain upper thresholds. To
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Figure 5.11: Mean profit for lower (left) and upper (right) thresholds
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Figure 5.12: Mean number of trades for differ upper thresholds
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Figure 5.13: Performance of threshold combinations

test this idea, the average number of trades made for each upper threshold was plotted

in figure 5.12. Indeed, the number of trades depends on the upper threshold, peaking

when it is 16. Though the number of trades is not much higher than for 8, it appears to

have a dramatic effect. This also makes 8 an attractive choice for the upper threshold,

since strategies which trade often are likely to be more robust.

The contour plot in 5.13 shows how thresholds perform in combination. We have

already determined that 8 is a good choice for the upper threshold. However, before

we pick a combination, we should consider how the thresholdseffect the hierarchical

agent. Unlike the other parameters, the thresholds do not effect how the agent learns,

but rather what strategy it learns. Thus, there is no reason to choose different thresh-

olds for the standard and hierarchical agent; this will simply make comparing their

performance difficult at a later stage. Ideally we want a combination that performs

well for both agents.

The average plots for the hierarchical agent are shown in figure 5.14 and are sim-

ilar to those for the standard agent, though performance with high lower thresholds

is notably better. The peak at 8 and the valley at 16 in the performance of the upper

thresholds is still present. We can therefore justify usingan upper threshold of 8 for

both values.

Finally, let us consider the contour plot for the hierarchical agent seen in fig-

ure 5.15. Given that we want to use an upper threshold of 8, a lower threshold of

2 would be a good choice for both agents.
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Figure 5.14: Mean performance for values of upper threshold (left) and lower threshold

(right)
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Figure 5.15: Performance of threshold combinations
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5.3 Experiments

5.3.1 Hierarchical experiment

This experiment was designed to test our hypothesis by comparing the performance

of the standard agent to the hierarchical agent. We began by investigating which goal

partition scheme results in the best performance but failedto find any significant differ-

ence between the schemes. We then compared standard and hierarchical agents using

a wide range of indicator and signal combinations. A significant difference in per-

formance was noted in the trivial case with no indicators. Moreover, in this case, we

showed that the hierarchical agent can find a strategy that outperforms any strategy the

standard agent can find. However, differences in performance were not found outside

of the trivial case.

Only two subagents were used by our hierarchical agent. We assumed that if no

difference in performance can be found using two subagents,then there is unlikely to

be any difference when more subagents are used. Other parameters were fixed at the

values found for the hierarchical agent in the parameter tests.

5.3.1.0.6 Goal partition schemes As explained in section 4.4.3, the hierarchical

agent chooses groups of observations as goals instead of single observations. There

are three ways in which the observation space can be partitioned into groups: based

on holding states, short signals or long signals. The best partition scheme must be

determined before the hierarchical agent can be compared tothe standard agent.

To do this, a sample of 128 agents were trained for each partition scheme and

fourteen different indicator setups. Of these indicator setups, six had at least one short

and long signal, so any goal partition scheme could be used. The remaining eight

did not have a long signal, so only the holding state or short signal partition schemes

were applicable. When discussing these experiments, the indicator setups have been

grouped accordingly:

Long Signal Group = { B11,R11,K11,B21,R21,K21}

No Long Signal Group = { -,B10,R10,K10,BR10,BK10,RK10,BRK10}

The letters indicate which technical analysis indicators were present while the num-

bers respectively denote the number of short and long signals. Note that only one

technical analysis indicator is used for all setups with a long indicator. This is be-

cause using too many indicators and signals results in an infeasible number of possible
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Figure 5.16: Mean profit made by each goal partition scheme
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Figure 5.17: Mean subagents used for each goal partition scheme

observations. Consider an agent using all three indicatorsto generate two short and

one long signal. This gives 43 ·43 ·33 ·9 ·2 = 1990656 possible observations, orders

of magnitude higher than the number of points in the dataset.The fourteen indicator

setups used here are the only ones with a feasible number of observations.

Figure 5.16 shows the mean profit on the training and validation set for each par-

tition scheme, with the Long Signal Group on the left and No Long Signal Group on

the right. The values were obtained by averaging over the results of all the indicator

setups in each group. It is apparent that there is no significance difference between

the different partition schemes. Plotting short/long profit, number of trades and max-

imum down-draft yield similar uniform plots. The only indicator which reveals any

difference is the number of subagents used by the agents, shown in figure 5.17.

It is likely that agents using the holding space partition use fewer subagents on

average because many of them are picking the initial holdingstate as a goal. Since
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this initial state is only visited once per market segment, agents using this goal will

never change subagents. Similarly, some agents using the long signal partition might

be picking unusual signals as goals. Conversely, there are no unusual short signals,

so agents with the short signal partition cannot choose unusual goals and change sub-

agents often no matter which goals they choose. However, thenumber of subagents

used has no effect on the resulting policies, as seen in 5.16.

Since no significant difference could be found between the partition schemes, we

choose to use the holding state partition in subsequent hierarchical experiments, since

it can be used for any indicator setup.

5.3.1.0.7 Comparison between standard and hierarchical ag ent A sample of

128 standard and hierarchical agents were trained using thesame fourteen indicator

setups used above. In fact, the relevant results from above were simply reused for

the comparison. The indicator groupings used above are retained for the purpose of

plotting graphs.

Since the different goalset partitions had little effect onperformance, this suggests

that the hierarchical structure has little effect on performance in general. Thus, we

did not expect to see much difference between the standard and hierarchical agents.

However, some initial informal experiments found that the hierarchical agent appeared

to be performing better for indicator setup KD21. It was speculated that this might

be due to the different learning and convergence parametersused in the standard and

hierarchical agent. Indeed. when the standard agent was retrained using the learning

parameters from the hierarchical agent, the difference disappeared. In order to make a

fair comparison, the hierarchical parameters were used forboth agents in these exper-

iments.

Figure 5.18 compares the mean profit made by the standard and hierarchical agents.

Each pairing of bars corresponds to an indicator setup, withthe blue and red bars re-

spectively corresponding to the standard and hierarchicalagent. There is no significant

difference for any indicator setup other than the trivial setup with no indicators.

In fact, for an agent with no indicators, we can show that the hierarchical agent is

capable of finding a strategy that makes more profit on the training and validation sets

than any strategy the standard agent can find. This is becausethere are only 29 = 512

possible strategies for a standard agent with no indicators, so it is feasible to iterate

through all of them and find the highest profit made. This turnsout to be 30550, from

64 trades. However, in our experiments, the hierarchical agent found a strategy that
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Figure 5.18: Mean profit made by standard and hierarchical agent
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Figure 5.19: Mean number of trades made by standard and hierarchical agent

makes 32510 from 335 trades. Moreover, there are likely to bebetter strategies, since

we did not iterate through all the hierarchical strategies (there are over 42 million). This

is not a particularly practical observation, but proves that the hierarchical structure can

provide an advantage in at least one trading environment.

Looking at the number of trades made by the agents suggests there could be a

small difference between the standard and hierarchical agent. Figure 5.19 has the

same format as figure 5.18, but shows the average number of trades made. Here we

see that the hierarchical agents often make more trades. However, a paired t-test gives

a p-value of of 0.1895, which is not considered significant. However, a significant

difference is seen if setups R12 and BRK10 are considered in isolation. It might be

that the hierarchical agent finds more robust strategies forthese combinations. This is

tested later by looking at how these strategies perform on unseen data.

Investigating the short profit and maximum down-draft does not illuminate our
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Figure 5.20: Mean short profit made by standard and hierarchical agent
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Figure 5.21: Mean down-draft for standard and hierarchical agent



Chapter 5. Experiments 54

results. The mean short profit is shown in figure 5.20 and simply appears to mirror what

was seen in figure 5.18. The mean maximum down-draft is shown in figure 5.21 and

does not reveal any consistent patterns. For some indicatorsetups, the standard agent

has significantly less mean down-draft, whereas the reverseis true in other setups. The

difference appears to depend on the particular setup, and sono general statements can

be made.

The poor performance of the hierarchical agent is assumed tobe due to noise in

reward signals used to update the HQ-values. It may be that the hierarchical ‘memory’

does simply not help agents disambiguate market regime any more than their direct

observations. However, we consider this unlikely, since wefound an example of a

trading problem where the hierarchical agent does have an advantage. It follows that

our design is preventing the hierarchical agent from obtaining an advantage. Informal

observations found that reward recieved for choosing the same goal set and next sub-

agent varied wildly. As a consequence, the hierarchical agents simply seemed to be

converging on random goal sets and next subagents. If the algorithm was altered so

that these reward signals are more consistent, the hierarchical agent might outperform

the standard agent. It stands that some choices of goal set and next subagent must be

better, so it should be possible to design a reward function that reflects this.

5.3.2 Indicator combination experiment

Our agent is capable of using any combination of the three technical analysis indica-

tors described in section 4.1.2: Bollinger Bands, RSI or theFast Stochastic Oscillator

(KD). In this experiment we investigated which of these combinations are of value to

the agent. This experiment does not relate directly to the hypothesis, but highlights

some interesting behaviours that emerged from the standardreinforcement learning

agent. The hierarchical agent was ignored for this experiment. We found that agents

with multiple indicators could make more profit than agents with one or no indicators.

Dempster & Jones [7] made a similar observation. We also found that agents with

multiple indicators found more robust strategies than agents with one or no indicators;

these strategies made significantly more trades and made a profit on a wider range of

market conditions. This is a novel result, and provides an example of an agent learning

strategies appropriate to the information it is given.

For each combination of the three indicators, we trained 128different agents. For

each technical analysis indicator present, a single short signal was generated. All other
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Figure 5.22: Mean profit made on training

(blue) and validation (red) sets
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Figure 5.23: Mean number of trades

parameters were fixed at the values found during parameter testing.

A single short signal was used to keep the number of possible market observations

low. If we limit the agent to a single short signal, then the agent with all three indicators

only has 4· 4 · 3 ·9 · 2 = 648 indicators, which is a much more manageable number.

Limiting the agent in this way therefore ensures that we are seeing the effects of giving

the agent more information, rather than the effects of ‘overwhelming’ the agent. The

value of combinations of short and long signals is investigated in another experiment,

where the number of possible states is reduced by limiting the number of technical

analysis indicators.

The mean profit for each combination is shown in figure 5.22. The letters B, R and

K respectively refer to Bollinger Bands, RSI and the Fast Stochastic Oscillator (KD).

Note that the agents made more profit on the validation set, asopposed to the training

set, which would usually be the case. This is because the validation set contains more

rising market segments, and so is more favourable to our agent design regardless of

which indicators are used. It also means that the distinction between the training and

validation set is meaningless here, so other indicators usethe combined performance

on the training and validation sets.

It appears that agents using any two indicators in combination performed better

than agents using any single indicator, although this is only significant for the agents

using Bollinger Bands and RSI or the agent using all three indicators. Figure 5.23

shows the average number of trades made by agents and revealsa significant difference

between agents using different numbers of indicators.

A clear relationship is seen between the number of indicators and the number of

trades made; the agents using one or no indicators made between 50 to 100 trades
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Figure 5.24: Mean profit made on each training and validation market segment

on average, while the agents using two made between 150 and 200, and the agents

using all three indicators make almost 300. Note that this isthe number of trades made

over all the training and validation market segments, and since the agents are forced to

close their position at the end of a segment, they must trade at least 16 times. Thus, the

agents with no indicators made on average 68.08−16= 52.08 voluntary trades, and

52.08/16= 3.26 voluntary trades per market segment. By comparison, the agents with

all three indicators made on average 283.75−16= 267.75 voluntary trades; 16.73 per

market segment. The ‘logic’ of strategies found by agents using more indicators was

therefore checked more often, and so we expect that these strategies are more likely to

work on unseen data. This indicates some level of robustness.

Figure 5.24 provides a clearer picture of how robust agents’strategies are. Each

cluster of bars shows performance on the 16 market segments from the training and

validation datasets. The colours of the bars match the colours in figure 3.1; blue and red

respectively denote rising and falling market segments. The agents with no indicators

clearly struggle to make profit on falling markets. The agents with one indicator do a

little better, but still make the body of their profit on rising markets. Conversely, the

agents with two or more indicators do not appear to favour falling or rising markets.

Figures 5.25 and 5.26 reveal weaknesses common to all agents. Figure 5.25 com-

pares profit made on long and short positions. Clearly, all agents make less profit from

short positions. This is not entirely unexpected, as discussed in section 5.1.1.1. How-
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Figure 5.25: Mean profit made on long

(blue) and short (red) positions
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Figure 5.26: Mean maximum down-draft

ever, note that the agents using Bollinger Bands and RSI or all three indicators made

almost twice as much profit from short positions as agents using any one indicator. By

contrast, the profit made on long positions increases very little. This suggests that the

primary advantage of having more indicators, or information, is the ability to make

money on short positions. Figure 5.26 shows mean maximum down-draft which is

fairly large, but does not seem to correlate to the number of indicators used. However,

the mean maximum down-draftft values reflect worse on the agents with one or no

indicators since they ultimately make less profit.

Finally, figure 5.27 compares the mean profit made by convergent strategies to

that made by the best strategies, which was used to produce the other figures. The

convergent policies are significantly worse than the best policies, suggesting that the

convergence of the algorithm could be improved considerably. Moreover, the differ-

ence in performance seems worse for the agents using more indicators. For instance,

the convergent strategies of agents using just Bollinger Bands or RSI make more profit

than the strategies of agents using both.

5.3.3 Signal combination experiment

Our agent is capable of using six combinations of short and long signals as detailed in

section 4.1.2: S0L0, S1L0, S2L0, S0L1, S1L1, S2L1. In this experiment we investigate

which of these six combinations are of value to the agent. Again, this experiment does

not relate directly to the hypothesis and ignores the hierarchical agent. We found that

giving agents long signals allowed them to make better trades and increase their profits,

but did not seem to alter their fundamental strategies. Giving agents an additional
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Figure 5.27: Mean profit made by convergent (blue) and best (red) strategies

short signal dramatically changed the strategies they found and increased the number

of trades they made. These are both novel results, and reinforces the idea that the agent

learns strategies appropriate to the information it is given.

For each combination of short and long signals, we trained 128 different agents. A

single technical analysis indicator was used to generate the signals: the Fast Stochastic

Oscillator (KD). All other parameters were fixed at the values found during parameter

testing.

A single technical analysis indicator is used for the same reason that a single short

signal was used in the indicator combination experiment: tolimit the size of the obser-

vation space. We chose KD over BB or RSI simply because it has three discreet states

instead of four, which further reduces the observation space. Otherwise, the indicator

combination provided little reason for choosing one indicator over another. Using just

KD, we have a maximum of 3·3 ·3 ·9 ·2 = 486 states when two short and one long

signal are used.

Figure 5.28 shows the mean profit made by agents on the training and validation

sets. The numbers next to S and L beneath each bar show how manyshort and long

signals were used. Recall that we expected that increasing either the number of short

or long term signals would improve performance. Figure 5.28reveals that this is true

for the long signals. The three rightmost bars correspond toagents trained with the

long signal. The first two of these are signficicantly higher than the corresponding bars
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Figure 5.28: Mean profit made on training

(blue) and validation (red) sets
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Figure 5.29: Mean number of trades

on the less. The last bar is not, but these agents were using more signals than any other,

and so we may be seeing the effects of ‘overwhelming’. The twobars for the agents

using two short signals are lower than the corresponding bars for agents using a single

short signal, which does not meet our expectations.

However, it is important to take the number of trades made by agents into account

when evaluating performance. This is shown in figure 5.29. Here was see a similar

effect to what was seen in the indicator combination experiment; increasing the amount

of information causes the agents to make more trades. However, the effect of increasing

the number of short signals from one to two is far more dramatic than the effect of

adding the long signal. In fact, the effect of doing the latter is insignificant.

The results support our reasons for including the additional signals. We reasoned

that adding the second short term indicator would allow agents to learn a number of

technical analysis rules that involve changing signals. This should allow then to de-

velop more complex strategies, which seems to be the case here; the number of trades

increase dramatically when the second signal is added. On the contrary, we reasoned

that adding the long term indicator would enable the agent topartially uncover the un-

derlying regime. While this should not fundamentally change the agents’ strategies,

it should give them a better idea of how the market transitions between observations.

This allows better trades to be made, which results in increased profit, as seen in fig-

ure 5.28.

Figure 5.30 shows how the agents perform on each segment of the market, and

provides further support for our view. Consider the performance of the agents with one

short signal in the second and fifth clusters. Notice how the fundamental behaviour of

the agent changes when another short signal is added (third and sixth clusters). The
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Figure 5.30: Mean profit made on each training and validation market segment
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Figure 5.31: Mean profit made from long

(blue) and short (red) positions
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Figure 5.32: Mean maximum down-draft

longest bars are now red instead of blue. Conversely, the difference between the two

clusters with one short signal, which shows the effect of using the long signal, is less

pronounced. There are more taller bars, but the overall appearance of the cluster is

similar.

We might take figure 5.30 to mean that the agents with two shortsignals are mak-

ing more profit from short positions, since their clusters contain many tall red bars.

Figure 5.31 shows that this is not the case; all agents are still make significantly less

profit from short positions. Figure 5.30 therefore reveals that the agents with two short

positions are good at making money off long positions in falling markets. This is sup-

ported by noting that the longer red bars are soft red which are the gently decreasing

segments with lots of ups and downs. This suggests a fairly complex strategy with

good timing. As with the indicator combination experiment,figure 5.31 shows that

increasing information has a greater effect on short profits. However, figure 5.32 has
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Figure 5.33: Mean profit made by convergent (blue) and best (red) strategies

at least one significant feature not seen before. The agents with two short signals have

a large maximum down-draft. This suggests that the increased number of trades made

by these agents results in strategies with higher risk.

Finally, let us consider how the convergent policies compare to the best policies

we have been considering. Figure 5.33 again confirms that theconvergent policies are

significantly worse than the best policies, particularly for the agents with two short

signals. In the previous experiment we speculated that the difference in performance

increased with the amount of information given to the agent.This suggests that the

difference may be related to the number of trades the agents are making, rather than

the amount of information.

5.3.4 Commission experiment

In this experiment, we investigate the effects of charging the agent a realistic commis-

sion rate of 0.25% every time a position is opened or closed. Comission rates were ig-

nored in previous experiments since they obscure some of theinteresting results noted

above. We found that comission rates had a dramatic negativeeffect on performance,

such that agents could not consitently outperform the ‘buy and hold’ strategy. This

problem is common in novel algorithmic traders. However, wealso found that agents

made fewer trades when comission rates were introduced, providing a further example
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Figure 5.34: Mean profit made on training

(blue) and validation (red) sets
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Figure 5.35: Mean number of trades

of the agent adapting to its situation.

The broker simulator was set to charge commission, and performance with six

different indicator setups was investigated:{ -, K10, BR10, BRK10, K11, K12}.
Each of these setups is intended to represent a number of setups that were found to

produce similar performance in previous experiments.

Figure 5.34 shows the mean profit made by agents on the training and validation

sets. Observe that the performance of agents trained with noindicators and just the

Fast Stochastic Oscillator (KD) are similar. In fact, theseagents are almost exclusively

finding the buy and hold strategy. Thus, the performance level set by these agents can

be taken as a target level for the other agents. Unforunately, this target is only surpassed

by the agent with all three indicators. Figure 5.35 is somewhat more encouraging. The

number of trades made by these agents is significantly less than the equivalent agents

without commission (see sections 5.3.2 and 5.3.3). For instance, without commission,

the agents with all three technical analysis indicators made on average 283.75 trades;

here they make just over 70. This indicates that the agents are adopting sensible strate-

gies and trading less to try and reduce commission costs. Unfortunately, this is not

enough to offset the loss.

Figure 5.36 shows the mean profit made by agents on each marketsegment from

the training and validation sets. Here we see that the agentswith long and short KD

indicators are failing to make money from declining markets. This stands in contrast

to the equivalent agents in the indicator scope experiment which were able to average

a profit on all but one declining market segment. The profiles for the other agents show

a similar drop in performance.

Figure 5.37 suggests why this might be. None of the agents areable to average a
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Figure 5.36: Mean profit made on each training and validation market segment
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Figure 5.37: Mean profit made from long

(blue) and short (red) positions
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Figure 5.38: Mean maximum down-draft
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Figure 5.39: Mean profit made by convergent (blue) and best (red) strategies

profit from short positions. As explained in paragraph 5.1.1.1.3, making profit from

short positions requires good timing which requires reliable market signals. Therefore

it may be that the indicators provided to the agents are informative enough for profit

to be made when commission is ignored, but not when it is included. Here it would

be useful to look at the agents’ performance with multiple indicators at multiple time

scales. Unfortunately, this is infeasible with our currentagent design, due to the blow-

up of the observation space. An agent that could generalise the observation space might

be able to overcome this problem. Figure 5.38 shows that maximum down-drafts are

not significantly worse that those seen in previous experiments, though they are worse

when considered in relation to the ultimate profit.

Finally, figure 5.39 shows how the performance of the convergent policies com-

pares to the performance of the best policies. For three of the indicator setups, the

convergent policies perform similarly to the best policies. However, this is not par-

ticularly significant, since these agents are mainly findingthe trivial ‘buy and hold’

strategy. For the remaining three indicators, the convergent policies are significantly

worse, as in the previous experiments, Moreover, some of indicators are causing the

agents to converge on policies that make a loss. This reaffirms our assertion that the

learning algorithm could be improved significantly. As noted in section 5.3.3, the dif-

ference seems to be greater when the agents are making more trades.
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Figure 5.40: Mean profit made on training

(blue), validation (green) and test (red) sets
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Figure 5.41: Adjusted mean profit made on

training (blue), validation (green) and test

(red) sets

5.3.5 Unseen data experiment

In this experiment we tested the agent’s performance on unseen data. In our previous

tests and experiments, the agents were trained on the training dataset and then tested

on both the training and validation datasets. To truly evaluate the performance of our

agent, we must investigate its performance on unseen data. While the validation dataset

is unseen to some degree, it was used for choosing parametersin the parameter test.

The test dataset, however, has not been used for anything andso is genuinely unseen

data. We found that the agents without a commission charge could make a profit on

unseen data and agents trained with more indicators gave a more balanced performance

across the training, validation and test set. Agents with a commission cost performed

poorly across all datasets, and failed to outperform the buyand hold strategy on any

unseen data. Finally, we found no difference between the performance of standard and

hiearchical agents on unseen data.

A sample of 128 agents was trained with the same six indicatorsetups used in the

commisison experiment:{ -, K10, BR10, BRK10, K11, K12}. We then recorded the

mean profit made by agents on the training, validation and test dataset. Other indicators

were ignored in this experiment, since the number of trades was observed to remain

consistent over different datasets, and other indicators were found to be proportional

to profit.

Figure 5.40 shows the mean profit on the training, validationand test datasets.

The agents are making less profit on the test datasets which suggests that they are

performing worse on unseen data. However, we should acknowledge that our agent
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Figure 5.42: Mean profit made training

(blue), validation (green) and test (red) sets

K10 BR10 BRK10 K11 K12
−100

−50

0

50

Indicator setup

A
dj

us
te

d 
m

ea
n 

pr
of

it 
m

ad
e 

on
 tr

ai
ni

ng
 (

bl
ue

),
 v

al
id

at
io

n 
(g

re
en

) 
an

d 
te

st
 (

re
d)

 d
at

a

Figure 5.43: Adjusted mean profit made on

training (blue), validation (green) and test

(red) sets

design tends to do better in increasing markets, regardlessof strategy. This is accounted

for by subtracting the profit made by the buy and hold strategyfrom our agents’ mean

profit. Since the buy and hold strategy only makes a profit on increasing markets, it

indicates how much the market increased in each dataset. Thebuy and hold strategy

respectively makes 49.1, 125.2 and -10.2 profit on the training, validation and test

datasets.

Figure 5.41 shows the adjusted profit and reveals a differentpicture. Note that the

agents with the right four indicator setups are all able to dosubstaintially better than

the buy and hold strategy on all three datasets. In previous experiments we speculated

that agents trained with more information find more robust strategies. That appears to

be the case here. The agents with the left two indicator setups have less information,

and appear to have difficulty outperforming buy and hold on the validaiton set.

Figures 5.42 and 5.43 are the equivalent of figures 5.40 and 5.41 for agents that

were charged a 0.25% commission cost for trading. The consistently poor performance

on the test dataset in figure 5.42 is again a consequence of more favourable conditions

in the validation set. As above, we compensate for this by subtracting the profit made

by the buy and hold strategy. When comission is charged, the buy and hold strategy

respectively makes 23.81, 96.28 and -42.72 profit on the training, validation and test

datasets. The adjusted profit is shown in figure 5.43. None of the agents were able to

outperform the buy and hold strategy on all datasets. This supports our idea that the

agents do not have enough information to deal with commission costs.

Finally, in the hierarchical experiment, we noted that someof the hierarchical

agents tended to make more trades, and speculated that this might translate to more
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Figure 5.44: Mean profit made by standard (blue) and hierarchical (red) agents on

unseen data

robust strategies. If this is the case, then we should see thehierarchical agent making

significantly higher profits than the standard agent on the test dataset. However, this is

not seen in figure 5.44.
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Conclusion

In this dissertation we were motivated by the question of whether hierarchical rein-

forcement learning can outperform standard reinforcementlearning on markets with

regime change. We showed that in a very simple scenario wherean agent has no indi-

cators, a hierarchical agent can learn a policy that makes more profit than any policy

the standard agent can find. The robustness of a policy that uses no indicators what-

soever is likely to be poor, so this is not a practical result.However, it does show

that there do exist trading problems where the hierarchicalstructure gives the agent an

advantage.

Unfortunately, our other comparisons between the profit made by the standard and

hierarchical agent did not find any significant difference. The hierarchical agent found

strategies that made slightly more trades under certain conditions. It was speculated

that these strategies may be more robust, and thereby perform better on unseen data.

However, no such effect was observed when the performance ofstandard and hierar-

chical agents on unseen data was compared.

We can therefore conclude that, given our agent design, there is no significant dif-

ference between performance of the standard and hierarchical agent. The poor perfor-

mance of the hierarchical agent was assumed to be caused by the inconsistent nature

of the reward signals used by agents to select a goal and next subagent. Thus, a design

that reduces the noisiness of these reward signals might give the hierarchical agent

an advantage. A possible way of doing this might be to use subagents with different

reward functions. This might cause the subagents to learn more distinctive policies

which gives them a clear advantage in different regimes. This would require substan-

tial alterations to the current algorithm.

Our research also found some interesting results that were unrelated to the hypoth-

68



Chapter 6. Conclusion 69

esis. Agents provided with two or more technical analysis indicators were able to

achieve greater profits than agents with one or none, confirming the results of Demp-

ster & Jones [7]. These agents had found strategies that mademore trades, which we

speculated might be more robust. Indeed, agents with more indicators could make a

substantial profit on all three of our datasets.

Our agent design allows the agent to use its technical analysis indicators to gener-

ate signals at different time scales. A long signal was included so that the agent could

identify the underlying market regime. The option of using two short signals from

consecutive time steps was included so that the agent could potentially learn complex

technical analysis rules. Both of these design decisions were justified by our results.

Giving agents a long signal allowed them to make more profit without making sig-

nificantly more trades. We speculated that the long signal helped restore the Markov

property, so the agent had a better idea of how the market transitioned, allowing it

to make better trades. On the contrary, giving agents two short signals caused them

to find complex strategies which made many trades and could profit on noisy market

segments.

Charging agents a commission charge for trading caused themto make fewer

trades. However, this was not enough to offset the charge, and so these agents gen-

erally failed to outperform the simple ‘buy and hold’ strategy on both seen and unseen

data. As realistic traders must always pay a commission cost, this indicates that our

strategies would have little merit in real world applications. It was noted that the agents

which were charged commission had difficulty making money from short positions.

This led us to reason that the indicators provided to the agents were not informative

enough to facilitate the complex trading strategies neededto make money in the face

of commission charges. Thus, giving the agent an even greater number of indicators

might overcome this problem.

Unfortunately, our design meant that we could only give the agents a limited num-

ber of indicators without causing the agents observation space to become infeasibly

large. This meant that we did not investigate the most complicated indicator combi-

nations possible under our design, such as using all three technical analysis indicators

to generate two short and one long signal. A modification of our design that allowed

agents to generalise large observation spaces would allow such combinations to be in-

vestigated. Moreover, indicators other than Bollinger Bands, RSI and the Stochastic

Oscillator could also be investigated. Indicators could also be used to generate signals

at a greater number of time scales, possibly longer than the ‘long’ week-scale indicator
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used here.

Another significant weakness in our design was the poor performance of conver-

gent policies, which was demonstrated several times. The difference between the per-

formance of the best and convergent policies seemed to be greater for agents that traded

more often. This was assumed to be a result of the market not following a true Markov

process. It was hoped that the hierarchical structure wouldhelp restore the Markov

property. Thus, if the design of our agent was changed so thatthe hierarchical struc-

ture did have an advantage, then convergence might improve.Alternatively, there are

also many methods of improving convergence in non-Markov processes in the existing

literature [19, 22] that could be incorporated.

The root of most of the design faults stems from the learning algorithm, rather

than the chosen observation space. The use of thresholds to form the holding state

is unusual and seems promising. It was shown that agents without these thresholds

performed worse than agents with them. There were also unexpected results in the

informal threshold test where the agent learns dramatically different policies for dif-

ferent upper thresholds. We did not examine this phenomenonfurther. Our obser-

vation space can be uncoupled from the reinforcement learning algorithm, so other

approaches could be used to investigate it. Since our strategies can be represented

by a binary bit string, some sort of genetic algorithm could be a good alternative to

reinforcement learning.

In light of our hypothesis, the key finding of this work is thata hierarchical agent

can outperform a standard agent in a trivial case. It is regrettable that we could could

not produce more results which illuminate our hypothesis, but this work has also pro-

duced several results that are interesting from other perspectives. Our results showing

how the agent can tailor its strategies to the information itis given provide a convincing

example of an agent that learns to trade, rather than being told how to trade. Some of

these results reaffirm what has been noted by other researchers, but others, particularly

our examples of agents adapting their strategies, are novelresults for reinforcement

learning.
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