Creating Algorithmic Traders with
Hierarchical Reinforcement
Learning

MSc Dissertation

Thomas Elder
s0789506

Master of Science
School of Informatics
University of Edinburgh
2008

Abstract

There has recently been a considerable amount of reseaochigorithmic traders that
learn [7, 27, 21, 19]. A variety of machine learning techmgihave been used, includ-
ing reinforcement learning [20, 11, 19, 5, 21]. We proposeiaforcement learning
agent that can adapt to underlying market regimes by obsghie market through
signals generated at short and long timescales, and by tlen@HQ algorithm [23],
a hierarchical method which allows the agent to change liggeggies after observing
certain signals. We hypothesise that reinforcement laegraigents using hierarchi-
cal reinforcement learning are superior to standard reagment learning agents in
markets with regime change. This was tested through a manketlation based on
data from the Russell 2000 index [4]. A significant differereas only found in the
trivial case, and we concluded that a difference does nat éxi our agent design.
It was also observed and empirically verified that our stach@aent learns different
strategies depending on how much information it is given whdther it is charged
a commission cost for trading. We therefore provide a noxahgle of an adaptive
algorithmic trader.

Acknowledgements

First and foremost, | must thank Dr. Subramanian Ramamypdathsupervising and
motivating this research, and for providing sensible sstjgas when | found myself
low on ideas. | would also like to thank my family and friends theering me up and

giving me moral support.

Declaration

| declare that this thesis was composed by myself, that th& wantained herein is
my own except where explicitly stated otherwise in the tart] that this work has not
been submitted for any other degree or professional quaiific except as specified.

(Thomas Elder
s0789506)

Table of Contents

I ntroduction
1.1 Outline e
Background
21 Trading e
2.1.1 Machine learning and algorithmic trading
2.2 Reinforcementlearning L o0 6
2.2.1 Reinforcement learning and algorithmic trading 9
The simulation 12
3.1 Themarketsimulator 12
3.2 Thebrokersimulator, 14
Agent design 16
4.1 Observationspace 16
411 Holdingstate, 16
4.1.2 Marketobservation L 17
4.2 AClONS 22
4.3 Rewardfunctions 23
431 Profit 23
43.2 ProftMadeGood. 24
4.3.3 Composite 24
44 Thealgorithm 25
4.4.1 The Watkins-Q algorithm 25
4.4.2 TheCHQalgorithm 26
4.4.3 Hybrid algorithm 0oL 29
4.4.4 Trainingprocedureo 32

5 Experiments 33
5.1 Methodology 33
5.1.1 Measuring performance 34
5.1.2 Statistical considerations 6 3
5.2 Parametertests 36
5.2.1 Convergencetests. e 38
5.2.2 lterationtests 41
5.2.3 Learning parametertests 42
524 Rewardtests 45
5.25 Thresholdtests 45
5.3 Experiments 49
5.3.1 Hierarchical experiment 49
5.3.2 Indicator combination experiment 4 5
5.3.3 Signal combination experiment 57
5.3.4 Commissionexperiment 61
5.3.5 Unseendataexperiment 65
6 Conclusion 68
Bibliography 71

Chapter 1
Introduction

The shortcomings of human traders have been demonstratetdess times. In most
cases, this does not have a far reaching effect: somebodyt hoge their savings,
somebody else’s promising career as an investment bankeesto an abrupt end.
But at times, the results can be catastrophic, such as theSivaét Crash of 1929, or
the collapse of Barings Bank in 1992.

Human traders are poorly suited to the fast moving, highlsnerdcal domain of
trading. Moreover, people are beset by a number of psycleabguirks that can result
in poor trading decisions, such as greed, fear or even justessness. It is no secret
that computers are immune to these problems, and they addyragplacing humans
in all aspects of trading. In most countries, the days whagets yelled at each other
across exchange room floors are long gone.

However, computers do not have a clean track record eithes.'Black Monday’
Stock Market Crash of 1989 is widely believed to have beersedwr exacerbated
by program trading [30]. However, these program traderseweerely implementing
strategies prescribed by humans. This suggests a probleugh we can replace
humans with computers, somebody still needs to progranetbemputers. So long as
algorithmic traders use rigid predetermined strategiesppe will be needed to create
and update those strategies, and human weakness will remthie marketplace. The
reason we need people, is because for all their weaknessesns do have a huge
advantage: they are good at adapting and learning.

It is reasonable to ask whether the numerical advantagefyofithmic traders
could be combined with the adaptability of humans. Afterthkre are well established
machine learning techniques that allow computers to lelarfact, there has recently
been considerable interest in algorithmic traders thamlgg 27, 21, 19]. However,

Chapter 1. Introduction 2

we feel that most of this research fails to replicate the &atafity of humans. Though
some have created agents that learn strategies, few haae\abl they these strategies
were learnt or how different strategies might be learnt ffedent situations. Moreover,
few have attempted to create agents that learn to adapt teehcanditions or regimes,

In this dissertation, we propose an algorithmic tradinggéhich addresses these
issues. When designing our agent, we have made decisianaitth& minimise the
human influence on resulting strategies. For this reason ave bhosen to design
a reinforcement learning agent, since reinforcement lagrhas been used in other
domains to learn strategies that humans would not find.

Other researchers have created algorithmic traders throeigforcement learn-
ing [20, 11, 19, 5, 21]. However, unlike in these approacbasagent is designed to
adapt to underlying market regimes. We argue that idemtfyfthese regimes makes
the market environment better suited to reinforcementiegr; which should improve
the performance of resulting strategies. We propose twawahich the agent can
identify these regimes. Firstly, the agent can make obsensawhich reveal long term
market trends. Secondly, the agent uses the CHQ algoritBindzierarchical learn-
ing method which allows it to change its strategy after mgkiertain observations.
The latter is the focus of our research, which explores tipothesis that an agent with
hierarchical reinforcement learning can outperform a dtad reinforcement learning
agent in a market with regime change.

Both standard and hierarchical agents were tested on a a®dumarket con-
structed using data from the Russell 2000 Index [4]. We sHwat our hypothesis
is true in a very trivial setup where neither agent makes aagket observations. Un-
fortunately, we could not show any significant differencéeween the standard and
hierarchical agent in any other experiment. We conclude dba hypothesis cannot
be supported given our agent design, but reason that aetffermight exist for an
improved agent design.

While testing our agent, it was noted that the agent wouldchleansiderably dif-
ferent strategies when given more information about theketaor charged a cost for
trading. Formal experiments were undertaken to investitfadse effects, and it was
found that the agent shows some interesting adaptive balvavi the agent has more
information about the market, it either makes better tramtesades more frequently.
If the agent is charged a cost for trading, then it tradesflespiently. These are novel
results and provide an interesting example of an agentéjpéitates human adaptivity.

Chapter 1. Introduction 3

1.1 Outline

The remainder of this dissertation is structured as foltow$apter 2 provides the
background to our research, and contains a brief overvidgvading and reinforcement
learning. Previous research is discussed and used to rretivahypothesis. Chapter
3 describes the market and broker components of the sinduéateironment which
our agent operates in. Chapter 4 contains detailed expdausadnd justifications for
each element of our agent design. Chapter 5 begins by degrolir experimental
methodology, after which the results of a wide range of testd experiments are
presented and discussed in depth. Chapter 6 concludessaarch by tying together
our results, discussing the shortcomings of our methodygsimg possible solutions,
and suggesting other avenues for future research.

Chapter 2
Background

In this chapter we give an overview of trading and reinforeetrearning while simul-
taneously motivating our research. We review previousaesteinvolving machine
learning and algorithmic trading, focusing on approacheasave used reinforcement
learning.

2.1 Trading

A financial trader must interpret large amounts of inforrnatand make split second
decisions. Clearly, traders can use computers to gain aanéaye, and so it is not
surprising that computers have had a prominent role intigatbr decades [14]. Most
traders will use computational technigues on some level gust as tools to assist in
decision making. Others allow computers to make decisibositaspecific aspects of
the trade, such as a system where a human trader decidesovitaatd, but a computer
decides when and how much to trade. Some companies use titdig@nous traders.

In order to motivate our research, we begin with a brief ow@mwof the methods
used by human and algorithmic traders, and how they differdéfine a human trader
as a trader who makes all their own decisions, such as whenvhatlto trade, but
may use computers to assist in the process. We define anthlgarirading system as
one where a computer makes some decision about the traderitAfgic traders are
referred to asgents.

2.1.0.1 Human trading

Techniques used by human traders fall under one of two brppbaches: fundamen-
tal or technical analysis. Though a trader may prefer onecggh, they are likely to

4

Chapter 2. Background 5

incorporate elements from the other.

2.1.0.1.1 Fundamental analysis = Fundamental analysis views security prices as a
noisy function of the value of the underlying asset, sucheaopmance of a company
or demand for a commaodity [25]. If the underlying value careBémated, then it can
be determined whether the security is under or overvaludus ihformation can be
used to predict how the security price will change. Simylaflit is possible to predict
the effect that news has on the underlying value of an a$sast,drice changes can be
predicted. For instance, if a company announces recor@sosen it is very likely
that both the underlying value and price of its stock will fal

2.1.0.1.2 Technical analysis Technical analysis is based on the assumption that
future prices of a security can be predicted from past pfigék This view is justified

by noting that human traders are somewhat predictable, Enting this results in
repeated patterns in security prices. However, this cditta the Efficient Market
Hypothesis, which states that future prices are indepednafeall past and present
prices. Consequently, technical analysis has traditipbalen dismissed by academics
[9], despite remaining popular among actual traders [29}weler, there is evidence
that technical analysis does work [17, 18], and many arenm@gyg to suspect that the
market is not as efficient as assumed [15].

2.1.0.2 Algorithmic trading

The algorithms used by algorithmic traders are diversegeuaerally based on meth-
ods used by human traders [14]. However, agents are ledg tikeise fundamental
analysis due to the difficulty of interpreting news articl€n the contrary, many use
technical analysis type rules, that humans struggle toviotlue to slow reaction times
or psychological factors, such as panicking when the vafieelwlding falls rapidly.
Some agents implement highly mathematical strategiesthat no parallel in human
trading due to the extreme amount of computation required.

2.1.1 Machine learning and algorithmic trading

The machine learning community has recently shown muchiesten the construc-
tion of agents that learn strategies, as opposed to theasthagproach of agents with a
‘hand-coded’ strategy. The methods used by these agerddmée learn-able, which

Chapter 2. Background 6

rules out the mathematically derived strategies used byesaigorithmic traders. As
such, research has focused on agents that learn technadpsisrtype strategies. Some
approaches involve agents creating their own rules, witliers have involved agents
combining rules to create strategies. Early approachedvied neural networks [24].
These are an obvious choice for learning technical analypesrules, with their abil-
ity to map patterns to discreet signals. However, the opagles learnt by neural
networks means it is hard to characterise their performg2eke

Dempster & Jones [7] criticised early research for focusingleveloping a single
trading rule, unlike actual human traders who generallyaisembination of rules. A
genetic algorithm was used to produce an agent that combihesiand outperformed
agents exclusively using one rule. Subramanian et al. [R@Jved that this method
can be extended to balance risk and profit, and developedean #at could adapt to
different market conditions aiegimes.

Economic regimes are periods of differing market behavibat may be part of the
natural market cycle, such as bull and bear markets, or magsed by unpredictable
events, such as a change of government, bad news or natsaatetis [12]. Although
human traders are certainly conscious of such regimes, regsarchers have ignored
their presence.

Reinforcement learning has been used to train automateersahich map market
observations to actions, and though these methods havgeenguccess, none have
addressed regime change. Some approaches use technigsisandicators as market
observations [9], while others use the historical priceesd20, 11] or a neural network
trained on the price series [19, 8, 10, 5].

We argue that the performance of reinforcement learningralgns in a market
environment can be improved if economic regime change isnakto account and
modelled as a hidden market state. We therefore proposeta tenforcement learn-
ing algorithm designed for environments with hidden stat@srarchical reinforce-
ment learning. To motivate this argument, we begin with aew\of reinforcement
learning.

2.2 Reinforcement learning

Reinforcement learning is an approach to machine learnimgygvagents explore their
environment and learn to take actions which maximise resvircbugh trial and error.
Sutton & Barto [28] provide a comprehensive introductiothefield, which we follow

Chapter 2. Background 7

in this section.

The agent always exists in some state It may choose some actiam which
takes the agent to a new stateaccording to some transition probability distribution
P(ss,a). After taking an action, the agent receives a rewfgl The agent has a
policy 1(s,a) which gives the probability of taking actianat states. The goal of the
agent is to learn an optimal poliagy which maximises expected reward.

Agents maintain atate value function V (s) which estimates the reward expected
after visitings, or a state-action value function Q(s,a) which estimates the reward
expected after taking actiamin states. Algorithms featuring state-action value func-
tions are known a®-learning algorithms. GivenV or Q, a deterministigreedy policy
T can be generated by makimg(s,a) = 1 for the action with the highest expected
reward. Calculating these rewards from a state value fandati requires knowledge
of the transition probability distributioP and reward functiorR, whereas an agent
with a state-action value functid@ can directly estimate these rewards. Q-learning is
therefore better suited to learning in environments wheog R are unknown.

The greedy policyt* is the optimal policy, provided that the value function from
which it is generated is optimal. However, in order to engbed the value functions
converge to optimal values, the agent must continue to saallpttates or state-action
pairs. The agent must therefore explore, and so the polieg éigr learning must
contain random non-greedy actions.

However, this poses a problem; if the policy contains exgiion, then the value
function will reflect this policy and not the greedy policyh@re are two approaches
to reinforcement learning which handle this problem inehéint ways. lron-policy
reinforcement learning, the amount of exploration is redtliover time, so that the
policy converges to the optimal policy. bif-policy reinforcement learning the agent
uses a sub-optimal learning policy to generate experiédngajses a greedy policy to
update the value function.

2.2.0.0.1 The Markov property An environment satisfies the Markov property if
the state transition probabilitid® depend only on the current state and action. The
learning task is a Markov decision process if the environnsetisfies the Markov
property. Convergence proofs for popular reinforcemeatrieng algorithms assume
that the learning task is a Markov decision process [31, 6].

Chapter 2. Background 8

2.2.0.0.2 Partially observable Markov decision orocesses (POMDPs) A learning
task is a partially observable Markov decision process (B®Wif the environment
satisfies the Markov property, but the agent’s observatiots not always inform the
agent which environment state it is in. This occurs when tenamakes the same
observatioro in distinct states; # ,...,S. This is known agerceptual aliasing.
The card games Poker and Bridge are POMDPs, as are many radigation tasks
where the robot’s sensors do not uniquely specify its |ocati

Though standard reinforcement learning is unable to legtimal policies for
POMDPs, it is reasonable to ask whether some modified forrainfarcement learn-
ing can. As Hasinoff [13] remarks, humans are adept at spl#@MDPs. If humans
can learn to play Poker and find their way out of labyrinthgntimachines should be
able to do the same. Indeed, there has been a considerablatohoesearch into us-
ing reinforcement learning to solve POMDPs [13]. Thoughrttethods used vary, the
general idea is toestore the Markov property by ‘revealing’ the underlying Markov
decision process.

2.2.0.1 Hierarchical reinforcement learning

HQ-learning is a hierarchical Q-learning algorithm deyeld by Wiering and Schmid-
huber [32] for learning policies for certain POMDPs. Thealthm features a number
of separate Q-learningubagents. Only one subagent is active at once, and its policy
is used for control. When that subagent reaches its goa, stahtrol is transferred
to the next subagent. Unlike standard reinforcement laeggrthe subagents have HQ-
tables, which estimate the expected reward of choosingcpiat goal states. The
agents use this to choose their goal state. If there are lyntghidden states which
require different policies, then a system with a subagenthvis fitted to each hidden
state should obtain optimal performance. It follows thdtaggents should learn to pick
goal states that mark transitions between hidden statésisasill maximise expected
reward. HQ-learning can be viewed as an elegant way of ircating memory into
reinforcement learning. Though the subagents do not djretire memories, if a sub-
agent is currently active it follows that certain states trhas/e been observed in the
past.

CHQ-learning is an extension of HQ-learning by Osada & ByfB] which allows
the sequence of subagents to be learnt and subagents todesl.reihe HQ-tables
are modified to estimate the expected reward of choosing tecplar goal-subagent
combination.

Chapter 2. Background 9

2.2.1 Reinforcement learning and algorithmic trading

The use of Q-learning to develop a simple but effective awyetrading agent was
demonstrated by Neuneier [20]. Gao & Chan [11] showed trep#rformance of the
agent can be improved by using the weighted Sharpe ratio ed@mance indicator
instead of returns.

Dempster & Romabhi [9] used Q-learning to learn a policy magmombinations
of standard technical analysis indicators to actions. Timthod was improved by
generalising the indicator combinations [10] and usingeofzbok statistics in place of
indicators [5].

Moody & Saffell [19] argued that reinforcement learningdirag agents learn bet-
ter through a recurrent reinforcement learning (RRL) alipon. This algorithm uses
a neural network to directly map market observations tooastj training the neural
network on experience. This bypasses the need for theatéita: value function used
by Q-learning. Dempster et al. [8] used the actions fromtféthod as ‘suggestions’
for a higher level agent which takes actions after evalggaisk.

Lee & O [16] designed a portfolio trading system with four €atning agents con-
trolling different aspects of trading, A complicated matwas used to quantify the
price series. This method was later expanded on [21] in &Bysthere multiple local
agents make recommendations about what to buy, which isasstte state space for
a reinforcement learning agent which outputs the amounitdoate to each agent.

2.2.1.1 Restoring the Markov property in a market

While some previous researchers have acknowledged th&/aokev nature of mar-
kets, there has been no substantial discussion on how twreegsie Markov property
in a market. Before attempting to restore the Markov prgperta market, we must
ask whether the market actually has an underlying Markosatatprocess. Consider
the technical analysis assumption; that future prices egorédicted from past prices.
Clearly, then, the prices do not follow a Markov decisiongass. However, instead of
individual prices, consider a short series of historicatgs. We can assume that there
is some limit on the effect prices have on the future. For gdamve might assume
that future prices are independent of prices more than tweke/é the past. Then we
can say thaseries of pricesfollow a Markov decision process.

However, since prices are continuous, there will be infipiteany price series,
so we cannot directly use the price series as a state. Onélgosslution is to use

Chapter 2. Background 10

a neural network to map price series directly to values oneations, bypassing the
need for a discreet value function and circumventing theestpace issue. This is the
approach used by Gao & Chan [11], Moody & Saffell [19] and ie thter work of
Dempster et al. [8]. An alternative solution is to assume thes possible to fully
capture the behaviour of a price series in certain discreitators, such as technical
analysis indicators. Then instead of using all the pricebastate, discreet indicators
can be combined to get a discreet state. This is the appraszhhy Neuneier [20],
Lee & O [16, 21] and in the earlier work of Dempster et al. [9, &)

However, if we take regime changes into account, then riestdne Markov prop-
erty becomes more complicated. We assume that, underatiffezgimes, price series
transition to other price series with different probalsi#. Then an agent that has some
knowledge of the underlying regime will perform better themagent that does not.
Identifying market regimes requires price series at a lofreguency than needed to
predict short term movements (e.g. daily prices insteadooilly prices). If a neural
network is being used to restore the Markov property, theoveet frequency price
series could be presented to the network alongside the bhggialfrequency series.
Similarly, if indicators are being used, equivalent indara for the lower frequency
price series can be included alongside the standard irlgcat

However, traders may need to remember which states theydwmrein the past
in order to identify the underlying regime. For example, wisame signal appears,
a trader might take it to mean that the market has now turnaddfeand adjust its
strategy accordingly. If an agent can only see the curremkehabservation, it is not
capable of this behaviour. The significance of this weakmebgyhlighted by noting
that some signals may only appear for a single time step. €@wealy, a hierarchical
reinforcement learning agent using the HQ-learning ataorioutlined above would
be capable of making these distinctions. For instance, ulb@gent tailored to bullish
markets is active but observes the bearish signal, it woaldapable of switching to a
subagent tailored to bearish markets.

Thus we propose to restore the Markov property in three steipst, by using tech-
nical analysis indicators to compress the price seriesdigiinct observations. Then,
by adding long term technical analysis indicators to assigie identification of un-
derlying regimes. Finally, we use hierarchical reinforelearning so that the agent
can disambiguate underlying regimes based on signals. grhthere is evidence that
neural network based approaches are superior [8], we uBeited analysis indicators
to facilitate hierarchical reinforcement learning. Thesdls us to hypothesise that

Chapter 2. Background 11

inforcement learning agents using hierarchical reinforcement learning are superior to
standard reinforcement |earning agents in markets with regime change.

Chapter 3
The simulation

In this chapter we describe the market and broker simulaftye market simulator

provides the continuous price series that the agent cormgsasato discreet observa-
tions. The broker simulator establishes a framework whietednines the effects of
the agent’s actions. As such, it is necessary to outlineithelation before describing

the agent design.

3.1 The market simulator

Real data from the Russell 2000 Index [4] was used to simalatarket with a single
asset. The Russell 2000 index is related to the Russell 3@@Xj which measures the
performance of the 3000 largest companies in the US. HowtheeRussell 2000 index
only considers the 2000 smallest securities from the RuU386D index, resulting in
an index which is free of the noise introduced by the largestmganies. This has made
it popular among technical analysis traders.

Tick by tick data was preprocessed to create a price vectadoh fifteen minute
interval. Each price vector contains the following infotima:

Open Price The price of the first trade in the interval
Low Price The lowest price of any trade in the interval
High Price The highest price of any trade in the interval
Close Price The price of the last trade in the interval

Ask Price The current ask price at the start of the interval

12

Chapter 3. The simulation 13

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

850

800

750

700

650

600

550
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Interval % 10°*

Figure 3.1: Russell 2000 Index (2004-11-10 to 2007-11-15) 15 Minute Intervals

Bid Price The current bid price at the start of the interval

The open, low, high and close prices amarket prices. prices at which trades
actually took place. The ask price is the lowest price at Wwisimme trader is willing to
sell stock, and the bid price is the highest price at whichestmnader is willing to buy
stock.

The close prices are plotted in figure 3.1. The market has §gérnto 24 datasets,
each which has been given a colour according to the followaigeme:

Bright Blue Rapidly rising segment: Close price is above open price amdage
price

Soft Blue Rising segment: Close price is above open price but belovageerice
Soft Red Falling segment: Close price is below open price but aboees@e price

Bright Red Rapidly falling segment: Close price is below open price amdrage
price

The colours are later used to investigate hobust the agents strategies are: how
well they perform under different market conditions. Théeme is designed so that

Chapter 3. The simulation 14

bright segments have very definite trends, while the softnssgs have a noisier side-
ways trend. For the purposes of our research, we take théfeeedt segments to
represent different regimes. This is a simple approach;ensophisticated ways of
segmenting the market could certainly be used.

The first eight segments are assigned to the training datédmesecond eight to
the validation dataset and the final eight to the test dataBeeé training dataset is
used for agent learning, while performance on the valigatiataset is used to tweak
parameters. The test set is used to test performance on etalyplinseen data. The
Russell 2000 index between 2004 and 2007 is well suited scstit of partition, since
each dataset contains diverse market conditions. A maekghent of each colour is
found in each dataset, with the exception of soft blue andakidation set. This is far
more diverse than the FTSE100 index, which was originalhgatigated.

3.2 The broker simulator

The broker simulator determines how the agent can tradeesithulated market. For
the sake of realism, the broker simulates a contract foeifice (CFD) service which
is offered by many real brokers [1, 3]. Traders take out a remhtwith the broker,
stating that the seller will pay the buyer the differencewsstn the current price of
asset (e.g. a number of shares) and the price of the assamnatfature time. The
trader can either be the buyer or seller in the contract,ettage known respectively
as long and short positions. The price of the contract doesewessarily reflect the
price of the asset; one of the big attractions of CFDs is they &llow traders to take
positions on stock they could not actually afford. Howevlee trader will ultimately
end up paying or receiving the full increase or loss for theeas

Traders must pay the broker commission for both opening &&ing a position,
as well as a funding cost every day. A realistic commissiocepwould be 0.25% of
the opening asset value [1]. Long positions accumulateifighcbsts on a day by day
basis, whereas short positions accumulate a funding dididéunding costs are based
on bank interest rates. This is because the broker has tovatine money used to buy
the asset when the trader takes a long position, but cantithesnoney from selling
the asset when the trader takes a short position. Since wetdnatude bank interest
rates in our simulation, funding costs are ignored. We dodwawr experiment with
comission prices.

We choose to use CFDs for two reasons. Firstly, they do notidighate between

Chapter 3. The simulation 15

long positions, which profit from rising prices, and shorsfimns, which profit from

falling prices. Our agent therefore has the potential to enaloney in both rising
and falling markets. Secondly, CFDs can be closed at any, twhizh means we can
impose less restrictions on how the agent acts.

When an agent opens a long position, the ask price from thé&eahamulator
is used as the current price, and when the position is clabedbid price is used.
Conversely, short positions are opened at the bid price lsed at the ask price. The
agent’s indicators are based on close prices, so it has nwl&dge of the bid or ask
price when it makes a trade. This difference between thee@itrader sees when it
decides to open or close a position and the actual price thiéiquois opened or closed
at is known aslippage.

Our simulation is not entirely realistic. It is assumed tet agent has no effect on
the market and can always open or close a position. Thesenpsisns are partially
justified by restricting the agent to small trades. Creatiniglly realistic simulator
is not trivial and is beyond the scope of this investigatiblowever, our assumptions
are not unprecedented and the use of ask and bid prices maiasisnalation is more
realistic than simulations which only use market prices.

Chapter 4
Agent design

In this chapter we describe each aspect of the agent dedignoliservation space,
actions, reward function and algorithm.

4.1 Observation space

The agent’s observation space combines information alh@uagent’s current hold-
ings with information about the market. Note that we use énmt'observation space’
instead of ‘state space’ as in standard reinforcement ilegur his is a technical for-
mality. In standard reinforcement learning, observatiorag to unique states, so there
is no need for the distinction. However, we cannot guaratiteewill be the case in
our market environment, though we hope that observationstmaertain states with
high probability after the Markov property has been resdore

At each time step the agent has an observation veatpr= (h, m, &) whereh
is the agent’s holding statey is a market observation ang is a binary variable
indicating whethet is the last time step in an an episode. This binary variable is
included because the agent is forced to close its positidheatast time step in an
episode, and so the available actions are different véhenl.

4.1.1 Holding state

The holding statdy, is a discreet variable taking valués € {0,...8}. The value
informs the agent whether it has a long or short position ama Well this position
is performing. The values are explained in figure 4.1 whedditpis defined as open
price + close price—((open pricex commission) + (close pricexcommission).

16

Chapter 4. Agent design 17

State Actions
Long: Profit over upper threshold Close Position, Hold Position

Long: Profit over zero Close Position, Hold Position

Long: Loss over lower threshold| Close Position, Hold Position

Long: Loss below lower threshold Close Position, Hold Position

Short: Profit over upper threshold Close Position, Hold Position

Short: Profit over zero Close Position, Hold Position

Short: Loss over lower threshold| Close Position, Hold Position

Short: Loss below lower thresholdClose Position, Hold Position

N OB W|IN|FL|O

No Position Open Long Position, Open Short Positipn

Figure 4.1: Holding States

The upper and lower thresholds are respectively positiceregative, and are in-
cluded to give the agent the potential to ‘wait’ until the fironoves outside these
thresholds before making a decision. Without these thidshihe agent tended to
trade too often. The thresholds are fixed parameters whict brichosen indepen-
dently of the learning algorithm; a good choice would dependhe market.

The distinction between profitable and lossy positionsss alcluded to improve
learning. Even if the profits made vary wildly, closing a gmsi when it is profitable
should usually result in a positive reward, and vice vershusl even if the agent is
unable to converge on accurate values, it should be ableneage on values of the
correctsign. Without this distinction (i.e. just the upper and loweresinolds) the
agent had difficulty learning what to do immediately afteenmg a position.

Lee and O [16] use a similar threshold based representdtistnmost prior ap-
proaches simply inform the agent what it is holding.

4.1.2 Market observation

Three popular technical analysis indicators are used tergés discreet signals from
the historical price series: Bollinger Bands, RSI and thst Ftochastic Oscillator
(KD). Each indicator is discussed in detail below, where wioW the descriptions
of Schwager [25]. Signhals may be generated at both short @amgl fime scales.
The short signals capture the behaviour of prices from teeday, while long sig-
nals capture behaviour from the last week. The vectys: {BBf, RS KDf} and

Chapter 4. Agent design 18

m C {BB{, RSI',KD{} give complete long and short term signals for a given timp.ste
Note thatms andm may be any subset of these indicators; the agent does nat-nece
sarily use all of them.

The complete market observation is an veetpof short and long signals. Several
combinations are experimented with:

SOLO m = 0 (no indicators)
SI1LO m = (1Y)
S2L0 m = (Mg,)
SOL1 m = (m)
(mp,m)
S2L1 m = (g y,me,m)

SIL1I m =

Agents using combinations with a long term signal are exqeetd perform well,
since they should be better at identifying underlying markgimes. In some combi-
nations the short term predictions for both the current aedlipus time step are used.
Agents using these combinations are also expected to pewiail, since a number
of technical analysis rules are based on changing signtsrrthan the signals them-
selves. Such rules exist for all three chosen indicatorse i@t we have not specified
these rules, but have given the agent the potential to déest¢bem.

We restrict the agent so that each short or long term signésioombination is
formed using the same technical analysis indicators (&g= {BBf,RI{} andm =
(BB, RSI{}). This gives our agent 46 different ways of generating miaskeervations.
We investigate the performance of agents using many of thebgwtions, though
some are infeasible due to the resulting size of the observapace.

4.1.2.1 Bollinger Bands

Bollinger Bands are based on arperiod simple moving average, which is simply
the average value of some indicator over the lagkeriods (15 minute intervals in
our case). Moving averages smooth out short term price ficins and are typically
used to reveal long term price trends. The Bollinger Bandstap bands which are
constructed by plotting two standard deviations above atoWbthe moving average.
The movement of the price in and out of the bands is thought toformative.

Chapter 4. Agent design 19

660

Figure 4.2: Bollinger Bands for the closing price from dataset segment 12 (Red: Short,

Blue: Long)

Signal | Description

0 | Market price above upper band

Market price between moving average and upper band

1
2 | Market price between lower band and moving average
3 | Market price below lower band

Figure 4.3: Scheme used to generate discreet signals from Bollinger Bands

A 20-period moving average is usually used by to plot BokinBands for day by
day data. For our short indicator, we have used 28-periokdghws the median number
of intervals in a day for our dataset. For our long indicatae,used 140-periods, which
is 5x 28: the median number of intervals in a week. Figure 4.2 pleshort and long
Bollinger Bands for the closing price from segment 12 of th&adet.

Figure 4.3 shows the scheme used to generate discreetssigmal the Bollinger
Bands. The discretization is based on two popular techmicalysis signals that in-
volve Bollinger Bands. Firstly, the market price moving aedhe upper band and
below the lower band are respectively considered to sigffell ar rise in price. Sec-
ondly, the market price moving above and below the movingame respectively in-
dicate up and down trends. This should make it clearer why awe Included signal

Chapter 4. Agent design 20

1.06 107 108 1.09 11 111 112 113 114

Figure 4.4: RSI for the closing price from dataset segment 12 (Red: Short, Blue: Long)

combinations using observations from two consecutive stegs. It allows agents to
act when signals change, which indicates that one of thesbanthhe moving average
has been crossed.

41.2.2 RSI

The RSI is a popular directional indicator which was introeld by J. Welles Wilder
in 1978. RSI stands for Relative Strength Index, but the amg is seldom used to
avoid confusion with other similarly named indicators. R@tasures the proportion
of price increases to overall price movements over therl@sriods. It is given by

RS =2
g+l

Whereg_andl_are the average gain and loss for thperiods. The average gain is
computed by ignoring periods where the price fell, and ayetass is computed anal-
ogously. Note that we are expressing RSI as a ratio, whidbrdifrom the standard
practice of expressing it as a percentage.

As with the Bollinger Bands, 28-periods are used for the simolicator and 140-
periods are used for the long indicator. Figure 4.4 plotssti@t and long RSI for the
closing price from segment 12 of the dataset.

Wilder recommended using 0.7 and 0.3 as overbought andadenslicators. The

Chapter 4. Agent design 21

Signal | Short RS Indicator | Long RSI Indicator
0| RS >0.65 RS > 0.55

1/0.65>RS >05 0.55>RY >05

2| 05>RS >0.35 05> RS >0.45

3| 0.35> RS 045> RS

Figure 4.5: Scheme used to generate discreet signals from RSI

RSI falling below 0.7 is then considered to signal a fallingrket, while the RSI rising
above 0.3 is considered to signal a rising market. Howetheryvariance of the RSI
depends on the period used, which can be clearly seen in fiieeetiice between the
curves in figure 4.4. Wilder's recommendations of 0.7 andv@e®e for an RSI with
14-periods. In order to generate reasonable signalsreliftéevels were used for our
28 and 140 period indicators: 0.65 and 0.35, and 0.5 and @stectively. These were
chosen so that the RSI moving outside these bounds was sagriijfibut still likely
to occur at least once during a given dataset segment. FHygbirghows the resulting
scheme used to generate discreet signals. We also use @Bitmp the values since
it provides a useful directional indicator.

4.1.2.3 Fast Stochastic Oscillator (KD)

The Fast Stochastic Oscillator (KD) was developed by GeGrgeane and indicates
how the current price of a security compares to its highedtlawest price in the last
n-periods. It is derived in two steps. Lptax andpmin be the highest and lowest prices
in the lastn-periods and lep; be the current price. Then

Pt — Pmin

Pmax — Pmin

K =

Again, aratio is used instead of the standard percentage. tNat if p; = prin then
K =0, while if py = pmax thenK = 1. K can be thought of as representing ‘how far’
the current price is between tineperiod high and low. The Fast Stochastic Oscillator
KD is simply a smoothed version &f, and is defined as the-period moving average
of K, wherem < n. The indicator has the effect of preserving the peaks anslidithe
price series, while compressing it between 0 and 1.

For our short indicator, 28-periad and a 4-period (one hour) moving average are
used. For our long indicator, 140-perigdand a 28-period moving average are used.

Chapter 4. Agent design 22

0.9
0.8
0.7

0.6

KD

0.5

0.4

0.3

0.2

0.1f

1 1 1 1 1 1 1 1 1

1.06 1.07 1.08 1.09 11 1.11 1.12 1.13 1.14
Interval x 10*

Figure 4.6: KD for the closing price from dataset segment 12 (Red: Short, Blue: Long)

Signal | Description
0| KD>0.8
1/08>KD>0.2
2|1 02>KD

Figure 4.7: Scheme used to generate discreet signals from KD

Figure 4.6 plots the short and long KD for the closing pricarirsegment 12 of the
dataset.

Lane recommended that 0.2 and 0.8 are used as oversold arlmboght levels.
These levels are used in our scheme to generate discreatssigpm KD, shown in
figure 4.7.

4.2 Actions

The actions available to an agent at titndepend on its current holding state and
whethert is the final interval in the episode. If the latter is true, #yent is forced to
close any position it has. Otherwise, if the agent has aipasitmay hold it or ‘invert’

it by closing that position and opening the opposite posi{e.g. long if the original

Chapter 4. Agent design 23

Final Time Step? | Holding States | Actions

Yes {0,...,7} Close Position

No {0,...,7} Invert Position, Hold Position

No {8} (No position)| Open Long Position, Open Short Positipn

Figure 4.8: Actions

position was short). If it has no position it may open eithéorag or short position.
This is shown formally in figure 4.8.

The agent begins in the ‘no position’ state, but cannot retioere; the agent must
always hold a position. This is partly due to learning issies also reflects the idea
that either going long or short must be as good or better tloamgchothing. Taking an
action causes the agent to move forward one time intervalh @acompletely ignored
except for measuring performance; it is assumed that thet af@ays has enough cash
to open a position or cover its losses.

The agent simply opens and closes positions on the minimuouanof shares
(). This is done to justify two assumptions that were madsrplify the simulation:
that the agent does not effect the market, and that the ageralways open and close
its position. Trading multiple stocks would also introdw@eew problem; how to best
time the trades. We want to ignore this issue and focus o pasiormance. However,
itis not unreasonable to say that a strategy that is proétaating on one stock can be
adapted to trading multiple stocks and remain profitabldne©tesearch has typically
concerned similar small positions, with the exception efwork of Lee & O [16, 21].

4.3 Reward functions

The agent only receives reward for closing a position, whitddans the agent must
have enough lookahead so that it learns to associate oparpogition with the re-
ward it later receives for closing it. The algorithm is desg with this in mind. We
experimented with three different reward functions.

4.3.1 Profit

Profit is the obvious reward function, as it is generally adjmi®a to reward reinforce-
ment learning agents with whatever quantity is being mas@&ui Additive profits are

Chapter 4. Agent design 24

used, since the fixed ‘smallest position’ structure is beisgd and so the agent is not
reinvesting any profits into additional positions.

4.3.2 Profit Made Good

The Profit Made Good indicator is based on the Sharpe Ratioatat. Using only
profit as a reward function is often criticised, since preaititrading systems need
to take risk into account. A popular alternative to profit e tSharpe Ratio which
measures the returns per unit of risk. It is defined as
E(R-R¢)

var (R)
whereR s returns andR; is the return of some risk free asset. Since we ignore the

existence of risk free assets, the Sharpe ratio becomes.
E(R)

V/var (R)

However, our agent can potentially make very rapid tradesn eswitching posi-

tions in consecutive intervals. The Sharpe Ratio is not ddffor a single return, since
variance is zero. Moreover, the Sharpe Ratio tends to beturaily high or low for a
small number of returns. While it is a good measure for longitperformance, it is
a poor choice for providing immediate reward for small tred@&his motivated us to
design the Profit Made Good indicator.
E(R) R

MO~ TR 3R

Intuitively this can be thought of as the ratio of returnseturn movement. If all

returns are negative, th&MG = —1, if the sum of returns is zero th&MG = 0 and if
all returns are positive theAMG = 1. It is also well defined for a single return. It still
suffers from unnaturally high or low values for a short numbgreturns, but since it
is bounded between -1 and 1, this is less of an issue. It algores less computation.

PMG is related to the Sharpe Ratio, as both express soméralaip between
returns and asset volatility. It was informally observedittthey appear to approach an
approximately linear relationship for a large number otires.

4.3.3 Composite

The composite reward function is defined as the product ofitpaod Profit Made
Good:

Chapter 4. Agent design 25

1. For each episode

(a) Make observation and choose starting action
(b) Do
i. Take action, get reward and new observation
ii. Choose the next action and find the optimal action
iii. Compute optimal Q-value using the optimal action
iv. Set eligibility trace for current observation-actioaip
v. Use the optimal Q-value to update the Q-values of eligibdée-action
pairs

until episode terminates

Figure 4.9: Sketch of Watkins-Q algorithm

profit x PMG

This is intended to provide a compromise between the twaatdrs.

4.4 The algorithm

The algorithm is a hybrid of the Watkins-Q algorithm given $ytton & Barto [28]
and the CHQ algorithm given by Osada & Fuijita [23].

4.4.1 The Watkins-Q algorithm

The Watkins-Q algorithm is an off-policy Q-learning algbm with eligibility traces.
Eligibility traces are a way of dealing with temporal credgsignment. A sketch of
the algorithm is given in figure 4.9 and a pseudo code versitinmore detail is given
in figure 4.10. Visited states are given a trace which is dedagt every time step.
The trace indicates how eligible a state is for receivinga®ls at the current time
step. Effectively, eligibility traces allow state-actipairs to receive reward for future
actions. This sort of ‘lookahead’ is important in our ageesign; recall that the agent
only receives reward for closing trades. Thus, it needs talie to link the reward
received when the trade is closed to the action of opening it.

Chapter 4. Agent design 26

Initialize Q(s,a) arbitrarily and e(s,a) =0, for all 5, a
Repeat (for each episode):
Initialize s, a
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a’ from s" using policy derived from Q (e.g., e-greedy)
a* — arg max, Q(s'.b) (if @’ ties for the max, then a* — a')
d—r+~4Q(s a*)— Q(s,a)
e(s,a) — els,a) + 1
For all s, a:
(s, a) — Q(s,a) +ade(s. a)
If ' = a*, then e(s,a) — vAe(s,a)
else e(s,a) — 0

i !
s—s:a+—ua

until s is terminal

Figure 4.10: Watkins-Q algorithm in pseudo code (from [28])

4.4.2 The CHQ algorithm

The CHQ algorithm is a modification of the HQ-learning algfam proposed by Wier-
ing and Schmidhuber [32]. HQ-learning uses a systemMitdubagent€;,C,,...,Cy
that learn through conventional Q-learning. However, eadhagent also has a HQ-
tableHQ; .

Learning is performed on episodes witk= 1 2,.... T discreet time steps. Sub-
agentC; is activated at the beginning of the episode and greedilpsé®a subgoagl
from its HQ-table. It follows a policy based on its Q-valueétion Q; until subgoal
g is reached, at which point control is transferred to the agentCy. This continues
until the episode terminates whee: T, then Q and HQ-values are updated. Only one
subagent is active at a given time step.

The CHQ algorithm proposed by Osada & Fujita [23] simply niiegi the HQ-
learning algorithm so that subagents pick the next subaigeaddition to the goal.
Consequently, CHQ-learning can deal with repetitive tabls HQ-learning cannot.
A sketch of the algorithm is given in figure 4.11. Unlike thetWas-Q algorithm, the
agent does not immediately learn from experience. Thisstakace through a form of
batch updating at the end of each episode. These two legpairagligms are known
as online and offline updating. This should not be confuset wm and off policy
algorithms; both algorithms are off-policy. A pseudo co@esion of the algorithm is
given in figure 4.12. The following conventions are useed:time stepj = ith active
subagentp = observationa = action,s = subagentg = goal,n = next subagent and

Chapter 4. Agent design 27

1. For each episode

(a) Make observation and choose starting action, goal axidsabagent
(b) Do
i. Take action, get reward and new observation

ii. If the new observation matches the goal state, swap tosubagent

iii. Choose the next action
until episode terminates
(c) Update Q-values

i. Calculate optimal Q-value at each time step

ii. Update Q-values according to these optimal Q-values
(d) Update HQ-values

i. Calculate optimal HQ-value for each subagent used

ii. Update HQ-values according to these optimal HQ-values

Figure 4.11: Sketch of CHQ-algorithm

Chapter 4. Agent design 28

1. Initialise all values irQ; andHQ; to zero for each € {1,...M}
2. Repeat for each episode

(@ Lett=i=1
(b) Lets =1
(c) Chooseg; andn; greedily fromHQs (g, n).
(d) Whilet<T
i. Select actiora greedily fromQs (o, a).
ii. Do a, get reward; and new observation, 1
ii. If o =g
® Sy1< N
o i—i+1
e Chooseg; andn; greedily fromHQs (g,n)
iv. te—t+1
(e) Update Q-values
i. Find the ideal Q-value®
A Q" —r
B. Foreach=1,..., T—1
o Q —re+y((1—A) max(Qg(0r41)) +AQ)
ii. ThenQq(or,a) — (1—a?)Qg(0r,a) +aQ
() Update HQ-values Ledy be the last subagent in the episode
i. Find the ideal HQ-valueslQ'. LetR; = zi‘;{l\f*‘i It.
A. HQN — Ry
B. Foreach=N-1,...,1
o HQ' — R +y174((1~A) maxgn(HQs (g,) +AHQ)
ii. ThenHQs (g, M) «— (1—aH)HQq (g, M) +aHHQ

Figure 4.12: CHQ algorithm in pseudo code

Chapter 4. Agent design 29

1. For each episode

(a) Make observation and choose starting action, goal axidsabagent
(b) Do
i. Take action, get reward and new observation
ii. Choose the next subagent and find the optimal next sulbagen
iii. Choose the next action and find the optimal action
iv. Compute optimal Q-value using the optimal action anceg@nt
v. Set eligibility trace for current observation-actionbagent triple

vi. Use the optimal Q-value to update the Q-values of el@giblate-
action-subagent triples

vii. If the subagent has changed, choose new goal and neagsab
until episode terminates
(c) Update HQ-values

i. Calculate optimal HQ-values for each subagent used

ii. Update HQ-values according to these optimal HQ-values

Figure 4.13: Hybrid Algorithm Sketch

=reward. We abuse the notation and use Ispémds;, where the former means thi
active subagent and the latter means the subagent activeedt t

4.4.3 Hybrid algorithm

In early informal experiments, both the Watkins-Q and CH@oathms were used
to train non-hierarchical agents. CHQ was used with a siagle&gent. The aim of
this experimentation was to gain some idea of the suitglfithe algorithms in our
market environment.

Agents trained with the Watkins-Q algorithm learnt muchtéashan those trained
with CHQ, which we assumed to be a result of the online legrmrWatkins-Q. This
motivated us to develop an online version of the CHQ alguoritfihis is a reasonable
endeavour; Wiering & Schmidhuber [32] remarked that onlieisions of HQ-learning
should work. A fully online algorithm would be impracticglcomplicated, so we
developed an algorithm where Q-learning is online, but [d@nhing is offline. This

Chapter 4. Agent design 30

is a reasonable compromise, since Q-values are used mongefiy, and thus are
more likely to benefit from faster, online learning. A sketufithe algorithm is given
in 4.13. Note that the eligibility traces function is chadge map to state-action-
subagent triples.

The algorithm was also modified to make it better suited toroarket simulation.
Instead of goal observatiomgs the agent maintains some partition of the observation
space{Gy,...,Gn}. The agent reaches its goal when it observes any obsengtion
its chosergoal set G. The partitions ensure that there is a good chance of goaig be
reached in a given dataset segment, which would not be tleafcsiagle observations
were used as goals. Three partitions are used in our expetsme

e G; contains all observations where holding state- i
e G contains all observations where short market signfat i

e G; contains all observations where long market observati{m& i

Another modification was made to the algorithm, so that olisgra goal state
g € G does not ‘count’ as reaching the goal unless some other\dig®ro ¢ G has
been observed since the subagent assumed control. Thanpsgwo subagents with
the same goal alternating at every time step.

We also found it necessary to decay the learning paranétén order to ensure
convergence. Convergence is otherwise poor, which we ass$orbe caused by the
non-Markov nature of the market, even after our attemptssabring the Markov prop-
erty. The downside to decaying the learning parameter isgudy experience tends
to have a disproportionate effect on the final policy leamthe agent. However, the
variation caused by this is limited, so it is possible to ptoknbinations of parameters
that cause the agent to converge to good polioreaverage. The parametea &
controls the rate of decay. The separate learning rate ®H®-valuesg"? is not
directly decayed, but instead tiedd® by the parameten:

H
oM — gQ°

A pseudo code version of the complete hybrid algorithm igiin figure 4.14.
The hierarchical structure significantly complicates takestion of the optimal action.
A list of active eligibility tracese is maintained to reduce computation time.

Chapter 4. Agent design 31

1. Initialise all values irQ; andHQ; to zero for each € {1,...M}
2. Repeat for each episode

(@) Lett=i=1
(b) Lets =1
(c) Choose&s; andn; greedily fromHQs (g, n)
(d) LetG* andn* be the goal-set and next subagent maximisirg (g, n)
(e) Letay be the action maximisin@s, (01,a).
(f) Whilet<T
i. Do &, get reward; and new observation ;1
ii. If o1 € Gy ando; ¢ gthens 1 = nj otherwises 1 = .
ii. If o1 € G ando; ¢ g* thenQ* = Qn+ ands® = n*, otherwiseQ* =
ands' = s.
iv. Choosea 1 greedily fromQsg_,(0t+1,8)
v. Leta* be the action maximisin@*(o;1,a).
Vi. If t =tmax, 0« r— Qi(o,a) otherwised « r + yQ*(01,a") —
Qs (01, a).
vii. Sete(ot,a,%) < 1 and placex,a;, s one.
viii. Forall 6,4,Soneg.
A. Qs Qs(6,8) +0de(6,4,5).
B. If &1 =a" ands,1 =S, then
e 6,49 —yAe(6,4,9).
e If €(6,4,5) > 0.01, placeo;4,8one 1.
iX. If o1 € Gj ando; ¢ G
A i—i+1
B. ChooseG; andn; greedily fromHQg,, (9,n)

C. Let G* and n* be the goal-set and next subagent maximising

HQSt+1(g7n)'
X. O « o - ordecay

Xi. t—t+1

(9) Update HQ-values (As in CHQ algorithm)

Figure 4.14: Hybrid Algorithm

Chapter 4. Agent design 32

4.4.4 Training procedure

In the context of our trading simulator, an episode is a cetepkweep through a
segment of the dataset. During training, the agent cyclesitih segments 0-7 of the
complete dataset, then repeats the process. Multiple snmep the same epsiodes
are necessary to provide the agent with sufficient expegiefithe possibility of the
agent over-fitting to the training dataset is hoped to hawnbveduced by splitting it
into segments with different market conditions.

Chapter 5
Experiments

We begin this chapter by outlining the methodology used inegperiments. We
explain how performance is measured and describe whiclststat considerations
are made. The remainder of the chapter covers a large nunibeste that are split
into two sections:parameter tests and experiments. The former are used to identify
values for parameters that were required for the algorithuhare neither interesting or
relevant to the hypothesis. These tests involve lookingkabad range of parameters
in little depth.

The experiments are used to investigate aspects of our dysrproduce results
which are interesting or relevant to the hypothesis. Theedige in total, looking at
the performance of the hierarchical agent, the combinaifdechnical analysis indi-
cators, the combination of long and short signals, commisgtes and performance
on unseen data. The presentation and discussion of reseliatarleaved for both
parameter tests and experiments, and so there is no sefpasafies’ discussion.

5.1 Methodology

5.1.0.0.1 The Buy and Hold Strategy =~ We sometimes refer to thieuy and hold
strategy and use it as a control in some of our experiments. This is @lsistrategy
where a long position is taken at the start of the tradinggoeand closed at the end.
This tends to make money because market prices tend to gséime. A good trading
strategy should at least be able to do better than the buy@ddtrategy.

33

Chapter 5. Experiments 34

5.1.1 Measuring performance

The performance of an agent with given parameters is meadshreugh several indi-
cators. To evaluate the effect that parameters have on pgdntmance, a number of
agents are trained with the same parameters, and the vdlireBaators are averaged
over all the agents.

5.1.1.1 Indicators

5.1.1.1.1 Profit Profit is our primary indicator, since profit is what any tradéi-
mately seeks to maximise. In the majority of parameter téisis is the only indicator
used.

5.1.1.1.2 Number of trades The number of trades made by an agent gives us a
rough idea of what sort of strategy it is using. It if is onlading once per market
segment, then it must be using some sort of ‘buy and hold’ &t &nd hold’ strategy.
The value of other indicators should be questioned if the bemof trades is low. If
the agent only trades a few times per market segment, thetrattegy has not been
tested enough to say much about its performance.

5.1.1.1.3 Long/short profit ~ Long/short profit compares the profit made from long
and short positions. The numbers should at least both béymydiut it is expected
that profit made from short positions is smaller. This is lseaour price series is not
symmetrical and rises more than it falls. Making money ofirspositions is therefore
harder since the timing of closing the position is critidabng positions should ideally
be closed at ‘peaks’ in the market. It is not critical if a pesknissed, because the
price generally increases over time and the missed peakkely be surpassed. Short
positions should ideally be closed at ‘troughs‘. HoweMes, trough is missed, there is
less chance that the market will return to this low point ie thture.

5.1.1.1.4 Maximumdown-draft =~ Maximum down-draft measures the biggest poten-
tial loss made by the agent on any single position. Potelogalis calculated at every
time step, and measures how much of a loss (or profit) would deenif the agent
closes its position at that time step. Note that this is ceffié from actual loss; the
agent probably didn’t close the position at that time stepaxivhum down-draft is
therefore ‘worst case’ loss and provides an idea of how ribkystrategy is. As a rule

Chapter 5. Experiments 35

of thumb, the absolute maximum down-draft should be less tha profit that the
agent ultimately makes.

5.1.1.1.5 Number of subagents used The number of subagents used is only rel-
evant to the hierarchical agent, and tells us how often thagents are switching
control. It is particularly significant if a single subagestused; this means that the
hierarchical agent is using a standard reinforcement iegnpolicy.

5.1.1.2 Convergent policy vs. best policy

In section 4.4.3 we explained how we artificially decay thaéng parameten to en-
sure that the agent converges on a policy; we call thistheergent policy. However,
there is no guarantee that the agent converges on the oggohey, or even the best
policy it finds while it is learning. When choosing parametar the parameter tests,
we measure the performance of the convergent policies.i$ hiscause the parameter
tests are intended to optimise the complete learning dlgari However, when run-
ning experiments, we focus on the performance of the bestipsl This is because
we are interested in how well the agent can perform with ciifé parameters, so we
cannot justify ignoring the best policies simply becausealgorithm fails to converge
on them. In some experiments, we compare the performandeeafdnvergent and
best policies to provide an idea of how convergence couldrpeaved.

5.1.1.3 Performance on training, validation and test sets

In practice, the performance of agents on the training afidaton datasets was often
found to be better on the validation dataset. This is due teerfevourable market
conditions in the validation dataset. This indicates thatdagent is not over-fitting to
the training dataset, and since it is desirable to evallmsgagent on as wide a range
of market conditions as possible, we usually give indicatbat measure performance
on a combined training and validation dataset.

Performance on the test dataset is only measured in an engr@rvhich is used to
investigate the performance of various policies on unsea. d

5.1.1.4 Commission costs

The introduction of commission costs introduced a lot ofseanto the agents’ per-
formance which made it difficult to compare the effects ofatént agent designs and

Chapter 5. Experiments 36

parameters. For this reason, commission has been ignotsdi@wf a single experi-
ment which directly investigates its effect.

5.1.2 Statistical considerations

Several agents with the same parameters are not guaramtdevé the same best
or convergent policy. In fact, the performance of policiearid by identical agents
is considerably noisy. However, we can show that, on averegeain parameters
produce different levels of performance. A number of ageuitis the same parameters
are trained using different random seeds. The policy Idayrdach agent can be seen
as a sample of the population of all policies that agents widse parameters can
learn. Thus, by taking the mean of a given performance indidar each agent, we
can obtain a mean value for agents with the design and pagesnét/e use standard
error to estimate error in the mean. This is defined as

0)

/N

whereo andn are standard deviation and number of samples. Since we ogeesa
sizes of at least 32, we can be 95% confident that the true \dltlee mean lies
within approximately two standard errors of the sample m@anAs such, error bars
showing two standard errors are included on many of our gréfpihe error bars for
two populations of agents with different designs and patamselo not overlap, there
is a statistically significant difference between the twuylations. If the error bars
do overlap, we cannot be sure that there is no statisticaghifecant difference. In our
discussion we use the word ‘significant’ to mean statidiicggnificant.

5.2 Parameter tests

In this section we identify good values for the agent’s pagtars so that we can be sure
itis achieving reasonable performance in our experiméltis.agent requires so many
parameters that an exhaustive search through all combisatvould be impractical.
As such, the parameters are broken into groups such thafféoe @ each parameter is
roughly dependent on the other parameters in its group atependent of parameters
in other groups.

Convergence parameters (Note thata9® is set so thatt ~ a'@% at the end of
training.)

Chapter 5. Experiments 37

a1 Starting value of alpha
a9 Target value of alpha at end of training
af (Hierarchical agent only) Hierarchical alpha factor

€ Percentage of exploratory actions
Iterations

Iteration parameter Number of iterations wheo = q'@%
L earning parameters

y Discount factor

A Degree of eligibility
Behaviour parameters

Reward function Profit, Profit Made Good or Composite
Trading parameters

L ower threshold Lower threshold for determining holding state

Upper threshold Upper threshold for determining holding state

These groupings are by no means rigorous. Good parameteesfouand for the
first group, then used to find parameters for the second gemgpso forth. Placeholder
parameters were used for parameters that had not yet beed; filhese were ‘guesses’
based on observations in informal experiments. Two setau@peters were obtained:
one for the standard reinforcement learning agent, and ther dor a hierarchical
agent. We cannot claim that the resulting parameters afeqtgebut they should be
sufficient for meaningful comparisons.

The initial ‘placeholder’ parameters were set as follows:

e y=05
e A=0.75
e lterations: 64

e Reward Function: Profit Made Good

Chapter 5. Experiments 38

ar | 05 0.3 0.1
58.82 65.18 58.05
atarget | 0.1 0.001 0.00001
41.13 69.58 71.34
€05 0.3 0.1
32.10 53.33 96.93

Figure 5.1: Average profit of agents trained with various convergence parameter values

e Upper Threshold: 1

e Lower Threshold: 1

Note that the convergence parameters are absent since @reythe first to be
chosen. The market observation space was fixed so that tiné¢ laae two short and
one long Bollinger Band signals. We wanted to test pararsetera large state space,
but not so large that the experiments would require too mochptation time. When
testing hierarchical agents, two identical subagents weegl, since this matches the
setup used in our experiments.

5.2.1 Convergence tests

A sample of 32 agents were trained for each combination ofdlt@ving parameters.
e 01 € {1.0,0.50,25}
e a'¥9% ¢ £0.1,0.001,0,00001
e aM €{0.1250.25,0.5,1,2,4,8} (Hierarchical agent only)

o £€{05,03,0.1}

5.2.1.0.1 Standard agent performance The mean profit for each parameter value
was averaged over the values of the other parameters. Thesmas are shown in
figure 5.1. We can pick out good parameter values by lookirigeste averages.

The initial value of alphax; appears to have little effect, though the value of 0.3
stands out as the best choice. We can see that the targetV@ffeshould not be 0.1,
but there is little difference between 0.001 and 0.0000% [Bkvest value for epsilon
€ =0.1lis clearly the best choice. This makes sense intuitivelgesagents that explore

Chapter 5. Experiments 39

100
80~

60

40

Mean profit +/- 2SE

20

L L L L L
5 10 15 20 25
Combination number

Figure 5.2: Performance of chosen parameter combination (red) compared to other

parameter combinations

too much may never hold positions long enough to experientdry states above or
below the thresholds. Thus = 0.3, a'®9% = 0.001 ande = 0.1 would be a good
choice of parameters.

However, we have been treating the effects of the paramatersdependent, so
we should also consider the performance of the parametemmiination. Figure 5.2
shows the profit made by all parameter combinati@énsvo standard errors. The se-
lected combination is marked in red. This gives us a gendes df how the perfor-
mance of our chosen parameter combination compares tofmtbential combinations.
It is acceptable; it overlaps with the other ‘top’ combiwats and not with any of the
worst combinations.

5.2.1.0.2 Hierarchical agent performance The same approach was used to pick
convergence parameters for the hierarchical agent. Wectegbéhat good convergence
parameters for the hierarchical agent may differ from tledard agent, since they
also have a role in the hierarchical part of the algorithme &lerage profit for each
parameter value is shown in figure 5.3.

Indeed, the effect of the parameters seems to differ for teeafchical agent. It
appears that 0.5 is the best choice for the initial learnatga, while 0.001 stands out
as the best target learning rat€9, The hierarchical learning rate factor does not
appear to have much effect. Finally, the low value of epstlod.1 is clearly the best

Chapter 5. Experiments

40

0.5 0.3 0.1
69.07 64.64 52.32

az

97

26.56 56.55 100.92

atargst 1 0.1 0.001 0.00001
58.37 67.52 58.14
ah | 0125 025 05 1 2 4 8
61.60 59.57 65.39 65.16 62.86 56.86 57
€| 05 0.3 0.1

Figure 5.3: Average profit of hierarchical agents trained with various convergence pa-

rameter values

160
140
120

100

6

Mean profit +/- 2SE

a0t

80

o

20

L L
80 100
Combination number

I
60

Il
120

Il
140

Il Il
160 180

Figure 5.4: Performance of chosen parameter combination (red) compared to other

parameter combinations

Chapter 5. Experiments 41

200 200

Mean profit

Iteration

Figure 5.5: Mean profit against iterations for iteration parameter € {64,128 256 512}
(lightest: 64, darkest: 512)

choice, as with the standard agent. Based on thiss 0.5, a'®% = 0.001,a" =2
ande = 0.1 would be a good choice of parameters. Again, we do a rouglpadeon
again other combinations in figure 5.4. Our chosen comhindtioks acceptable.

5.2.2 lteration tests

The iteration parameter controls the rate at which the legrrate decays so that the
target value of alpha'®% js reached at the final iteration. This is independent of the
actual number of iterations used for training. A sample ofa@2nts was trained for
each of the following values of the iteration parameter.

e Iteration parametes {64,128 256 512}

We used 512 iterations for training regardless of the itergparameter.

The purpose of this test is threefold. Firstly, it gives usnsoidea of how the
agent converges on a good policy. Secondly, it lets us knatwirth letting the
learning rate decay slower so that it reactil€%% after more iterations. Finally, it lets
us know if there is any benefit to letting the agent continaerieng after the target
learning rate has been reached. Figure 5.5 plots the medih ganathe training and
validation sets against the number of iterations. The éghtines correspond to an
iteration parameter of 64 while the darkest lines correspian512. The upper and
lower lines respectively show the mean performatiasvo standard errors; the actual
means are not plotted. The graphs are truncated to 128idtesagince performance
did not change substantially after this point.

Chapter 5. Experiments 42

over values of Gamma

veraged

L L L L L L L L L L L L L L L L L L
0.0 0.1 02 03 0.4 05 06 0.7 0.8 0.9 1.0 0.0 01 0.2 03 04 05 0.6 07 0.8 0.9 1.0
Gamma Lambda

Figure 5.6: Mean profit for values of y (left) and A (right)

The noisy performance early in the plots shows that the adeve difficulty learn-
ing, which suggests that our environment is not approxingaéi Markov process. If
using hierarchical reinforcement learning helps restbesMarkov property, we would
expect to see less noise in the right graph, which is the ddseiever, we have not
investigated other factors that may be causing the diffaren

In both graphs, the number of iterations seems inverselg@tn to the perfor-
mance at convergence. However, the standard error linetapweonsiderably, so we
cannot say that there is any significant difference betwhempérformance of agents
with different iteration parameters.

In the absence of any significant difference, it is best wks#ith an iteration pa-
rameter of 64 to minimise computation time. Since the limesh iteration parameter
of 64 reach their convergent behaviour very quickly, we cian &eep the number of
iterations at 64.

5.2.3 Learning parameter tests

A sample of 32 agents was trained for each combination ofdheviing values ofy
andA.

e y€{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}

e A €{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}

5.2.3.0.3 Standard agent performance ~ The mean profit for each value gfwas
averaged over the values afand plotted in the plot on the left of figure 5.6. The

Chapter 5. Experiments 43

0.9

0.8

[+ @
’ i

01F 1 ﬁ

0.0 01 0.2 03 0. 5 0.6 0.7 0.8 0.9

Gamma

4 0.!
Lambda

Figure 5.7: Mean performance of y and A combinations

120

of Lambda
of Gamma

averaged over values
averaged ovel

Mean profit
Mean profit

L L L L L L L L L L L L L L L L L L
0.0 0.1 02 03 0.4 05 06 0.7 0.8 0.9 1.0 0.0 01 0.2 03 04 05 0.6 07 0.8 0.9 1.0
Gamma Lambda

Figure 5.8: Mean performance for values of y (left) and A (right)

right plot is the equivalent plot for Lambda. We can get amaidé which values
of these parameters are good by looking at these plots. Tiberalefinite ‘peaked’
structure in both plots, witly peaking at 0.6 and peaking at 0.7. This reflects our
intuition that both parameters should be high to provideapent with the ability to
‘lookahead’. Note that performance is poor o= 0, which justifies our decision
to use eligibility traces. Based on these plats; 0.6 andA = 0.7 would be a good
parameter combination.

Since we are only comparing two parameters, we can produeedhtour plot
seen in 5.6. Warm and cold colours respectively indicateoregof good and poor
performance. If we look wherg= 0.6 andA = 0.7 we see a low point between two
regions of better performance. Increasigp 0.8 brings us on to one of these better
regions. Thereforg = 0.6 andA = 0.8 are our chosen learning parameters.

Chapter 5. Experiments 44

Gamma

L
5 0.6 0.7 0.8 0.9

. . .
0.0 01 0.2 0.3 04 0.
Lambda

Figure 5.9: Mean performance of y and A combinations

140 T T T 140

120

100

80

Mean profit
Mean profit

60

40

20

Profit PMG Composite Profit PMG Composite

Figure 5.10: Mean performance of reward functions for standard (left) and hierarchical

(right) agents

5.2.3.0.4 Hierarchical agent performance Equivalent plots were created for the
hierarchical agent. As with the convergence parametersexpected that good pa-
rameter values would differ for the hierarchical agentgcsibothy andA have a role in
the hierarchical component of the algorithm. Indeed, tluspin figure 5.8 have less
pronounced peaks than in figure 5.6. The peak valuei®ft 0.5, whileA appears to
peak somewhere between 0.4 and 0.7.

The contour plot in figure 5.8 allows us to pick a more precel@® forA. Assum-
ing we wanty to be 0.5, then we can chookse- 0.7 so that our parameter combination
falls in the region of good performance on the right of thetplo

Chapter 5. Experiments 45

5.2.4 Reward tests

A sample of 128 agents was trained for each reward functisordeed in section 4.3:

profit, profit made good (PMG) and composite. The bar grapfigume 5.10 show the

profit made by the standard and hierarchical agents on tmértgeand validation sets.
It appears that PMG is the best reward function, and profitasstorst. However, if we

take error bars into account, the only thing we can be cedgis that PMG is better

than profit for the standard agent. This may be because PM&3 tadk into account

while profit does not. Gao & Chan [11] noted that the Sharpe rata better reward

function than profit for this reason. Alternatively, PMG mbg better because it is
bounded between -1 and 1, and therefore less noisy tham pitbfé ot the composite

function. Whatever the case, we chose to use PMG in our ottparienents, since

it is the only reward function that we can say has an advantage another reward
function,

5.2.5 Threshold tests

A sample of 32 agents was trained for each combination ofdhewing lower and
upper thresholds:

o Lower Threshold= {0,1/256,1/1281/64,1/32,1/16,1/8,1/4,1/2,
1,2,4,8,16,32,64,128 256,512}

e Upper Threshold: {0,1/2561/1281/64,1/32,1/16,1/8,1/4,1/2,
1,2,4,8,16,32,64,128 256,512}

5.2.5.0.5 Standard agent performance =~ The same approach used to select values
for yandA was used to select thresholds. The mean profit for each Itweshold was
averaged over the upper thresholds and plotted in the pldhereft of figure 5.11.
The right plot is the equivalent plot for the upper threslisold

Both plots reveal interesting patterns. In both casesstulels of zero give sub-par
performance, which justifies using thresholds. Low loweesholds give bad perfor-
mance, while moderate thresholds perform best and higheshblds give average
performance. Upper thresholds between 1 and 64 result ingbeperformance, with
the exception of 16, which results in extremely poor perfance.

The presence of this ‘valley’ is unexpected. It might be thate exist fundamen-
tally different strategies that agents will only learn waértain upper thresholds. To

Chapter 5. Experiments 46

Mean profit averaged over upper thresholds

100

90

80

70

60

50

40

30

Mean profit averaged over lower thresholds
@
3

S N T T R S S R 30 S T S R S S R TR
0 1/2561/1281/641/321/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512 0 1/2561/1281/64 1/321/16 1/8 14 1/2 1 2 4 8 16 32 64 128 256 512
Lower threshold Upper threshold

Figure 5.11: Mean profit for lower (left) and upper (right) thresholds

350

300

250

200

Mean number of trades

150

100~

0
0 1/2561/1281/641/321/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512

Upper Threshold

Figure 5.12: Mean number of trades for differ upper thresholds

Chapter 5. Experiments 47

Lower threshold
w |
- .
A ol

+

A e T L
0 1/2561/1281/64 1/32 116 18 1/4 12 1 2 4 8 16 32 64 128 256 512
Upper threshold

Figure 5.13: Performance of threshold combinations

test this idea, the average number of trades made for eadr tippshold was plotted
in figure 5.12. Indeed, the number of trades depends on therdppgeshold, peaking
when itis 16. Though the number of trades is not much highear tor 8, it appears to
have a dramatic effect. This also makes 8 an attractive elforche upper threshold,
since strategies which trade often are likely to be more stbu

The contour plot in 5.13 shows how thresholds perform in cioiion. We have
already determined that 8 is a good choice for the uppertitds However, before
we pick a combination, we should consider how the threshefigst the hierarchical
agent. Unlike the other parameters, the thresholds do fexttdfow the agent learns,
but rather what strategy it learns. Thus, there is no reas@hdose different thresh-
olds for the standard and hierarchical agent; this will dympake comparing their
performance difficult at a later stage. Ideally we want a coation that performs
well for both agents.

The average plots for the hierarchical agent are shown imdi§uL4 and are sim-
ilar to those for the standard agent, though performanck high lower thresholds
is notably better. The peak at 8 and the valley at 16 in theopmidnce of the upper
thresholds is still present. We can therefore justify usangupper threshold of 8 for
both values.

Finally, let us consider the contour plot for the hieraretiagent seen in fig-
ure 5.15. Given that we want to use an upper threshold of 8warlthreshold of
2 would be a good choice for both agents.

Chapter 5. Experiments 48

120 120

110

-
s
1)

=

S

3
T

Mean profit averaged over upper thresholds
®
8
T
Mean profit averaged over lower thresholds
5
3

©
]
T
©
S
T

~
=)
T
®
3
T

@
3
T
~
=)
T

60

@
3
T

TR SR 50 T S SR L L
0 1/2561/1281/641/321/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512 0 1/2561/1281/641/321/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512

Lower Threshold Upper Threshold

Figure 5.14: Mean performance for values of upper threshold (left) and lower threshold
(right)

Lower threshold

0
0 1/2561/1281/64 1/32 116 8 1/4 12 1 2 4 8 16 32 64 128 256 512
Upper threshold

Figure 5.15: Performance of threshold combinations

Chapter 5. Experiments 49
5.3 Experiments

5.3.1 Hierarchical experiment

This experiment was designed to test our hypothesis by congpthe performance
of the standard agent to the hierarchical agent. We begamesgtigating which goal
partition scheme results in the best performance but faddidd any significant differ-
ence between the schemes. We then compared standard aardhial agents using
a wide range of indicator and signal combinations. A sigaificdifference in per-
formance was noted in the trivial case with no indicators.réwer, in this case, we
showed that the hierarchical agent can find a strategy thpedorms any strategy the
standard agent can find. However, differences in performavere not found outside
of the trivial case.

Only two subagents were used by our hierarchical agent. \&lenaad that if no
difference in performance can be found using two subagéms, there is unlikely to
be any difference when more subagents are used. Other paramere fixed at the
values found for the hierarchical agent in the parametés.tes

5.3.1.0.6 Goal partition schemes As explained in section 4.4.3, the hierarchical
agent chooses groups of observations as goals insteadghé sibservations. There
are three ways in which the observation space can be pagdiinto groups: based
on holding states, short signals or long signals. The betitipa scheme must be
determined before the hierarchical agent can be compare tstandard agent.

To do this, a sample of 128 agents were trained for each iparticheme and
fourteen different indicator setups. Of these indicatdtugs, six had at least one short
and long signal, so any goal partition scheme could be usdt rémaining eight
did not have a long signal, so only the holding state or shgrtad partition schemes
were applicable. When discussing these experiments, theaitor setups have been
grouped accordingly:

Long Signal Group ={ B11,R11,K11,B21,R21,K2}1
No Long Signal Group = { -,810,R10,K10,BR10,BK10,RK10,BRK10

The letters indicate which technical analysis indicatoesenpresent while the num-
bers respectively denote the number of short and long sgnldbte that only one
technical analysis indicator is used for all setups with mglindicator. This is be-
cause using too many indicators and signals results in aasitfle number of possible

Chapter 5. Experiments 50

x 10 x10"
T T T

251 251

ining and validation data
~

ining and validation data
~

15F 151

Mean profit made on trai
-

Mean profit made on trai
N

05 051

H. States S. Signals L. Signals H. States S. Signals
Goal set partition scheme Goal set partition scheme

Figure 5.16: Mean profit made by each goal partition scheme

350 T T T 300

e N
@ S
3 S

Mean number of subagents

N
S
3

50

H. States S. Signals L. Signals H. Signals S. Signals
Goal set partition scheme Goal set partition scheme

Figure 5.17: Mean subagents used for each goal partition scheme

observations. Consider an agent using all three indicatogenerate two short and
one long signal. This gives®443.33.9.2 = 1990656 possible observations, orders
of magnitude higher than the number of points in the dataBe¢. fourteen indicator
setups used here are the only ones with a feasible numbesehdations.

Figure 5.16 shows the mean profit on the training and vabdaget for each par-
tition scheme, with the Long Signal Group on the left and Na¢.&ignal Group on
the right. The values were obtained by averaging over thealteesf all the indicator
setups in each group. It is apparent that there is no signdeaifference between
the different partition schemes. Plotting short/long grafumber of trades and max-
imum down-draft yield similar uniform plots. The only inditor which reveals any
difference is the number of subagents used by the agentsnshdigure 5.17.

It is likely that agents using the holding space partitioe €swver subagents on
average because many of them are picking the initial holdtatge as a goal. Since

Chapter 5. Experiments 51

this initial state is only visited once per market segmeggends using this goal will
never change subagents. Similarly, some agents usinglgesignal partition might
be picking unusual signals as goals. Conversely, there @mennsual short signals,
so agents with the short signal partition cannot chooseualgmpals and change sub-
agents often no matter which goals they choose. Howevenuh&er of subagents
used has no effect on the resulting policies, as seen in 5.16.

Since no significant difference could be found between thétioa schemes, we
choose to use the holding state partition in subsequerdrctgcal experiments, since
it can be used for any indicator setup.

5.3.1.0.7 Comparison between standard and hierarchical ag ent A sample of
128 standard and hierarchical agents were trained usingaime fourteen indicator
setups used above. In fact, the relevant results from ab@&re simply reused for
the comparison. The indicator groupings used above araeetdor the purpose of
plotting graphs.

Since the different goalset partitions had little effectp@mformance, this suggests
that the hierarchical structure has little effect on perfance in general. Thus, we
did not expect to see much difference between the standakdhiararchical agents.
However, some initial informal experiments found that tierdwrchical agent appeared
to be performing better for indicator setup KD21. It was spated that this might
be due to the different learning and convergence paramesed in the standard and
hierarchical agent. Indeed. when the standard agent wasned using the learning
parameters from the hierarchical agent, the differencapgisared. In order to make a
fair comparison, the hierarchical parameters were uselddtr agents in these exper-
iments.

Figure 5.18 compares the mean profit made by the standardenagidinical agents.
Each pairing of bars corresponds to an indicator setup, thighblue and red bars re-
spectively corresponding to the standard and hierarchgaht. There is no significant
difference for any indicator setup other than the trivialipewith no indicators.

In fact, for an agent with no indicators, we can show that tieegnchical agent is
capable of finding a strategy that makes more profit on theitrgiand validation sets
than any strategy the standard agent can find. This is betiaeigeare only 2= 512
possible strategies for a standard agent with no indicasarst is feasible to iterate
through all of them and find the highest profit made. This twuisto be 30550, from
64 trades. However, in our experiments, the hierarchicahafpund a strategy that

Chapter 5. Experiments 52

x10"

w
w o IS
T T

archical (red) agents

~
2
T

-
- «
T T

)
@
T

Mean profit made by standard (blue) and hierarchical (red) agents
~

Mean profit made by standard (blue) and hier

o

B11 R11 K11 B12 R12 K12 B10 R10 K10 BR10 BK10 RK10 BRK10
Indicator combination Indicator combination

Figure 5.18: Mean profit made by standard and hierarchical agent

500 T T T T T T 350

300

250

200

150+

100

50

Mean number of trades made by standard (blue) and hierarchical (red) agents

Mean ni

0

B10 R10 K10 BR10 BK10 RK10 BRK10
Indicator combination Indicator combination

Figure 5.19: Mean number of trades made by standard and hierarchical agent

makes 32510 from 335 trades. Moreover, there are likely tbditer strategies, since
we did not iterate through all the hierarchical strategilesre are over 42 million). This
is not a particularly practical observation, but proveg tha hierarchical structure can
provide an advantage in at least one trading environment.

Looking at the number of trades made by the agents suggests tbuld be a
small difference between the standard and hierarchicahtagEigure 5.19 has the
same format as figure 5.18, but shows the average numberdefstraade. Here we
see that the hierarchical agents often make more tradeseVvoya paired t-test gives
a p-value of of 0.1895, which is not considered significant. ldger, a significant
difference is seen if setups R12 and BRK10 are consideresbiation. It might be
that the hierarchical agent finds more robust strategiethfege combinations. This is
tested later by looking at how these strategies perform ceemdata.

Investigating the short profit and maximum down-draft does iluminate our

Chapter 5. Experiments

Mean short profit made by standard (blue) and hierarchical (red) agents

Mean maximum down-draft for standard (blue) and hierarchical (red) agents

9000

8000

7000

6000

5000

4000

3000

2000

1000

B11 R11 K11 B12 R12 K12
Indicator combination

Mean short profit made by standard (blue) and hierarchical (red) agents

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

53

B10 R10 K10 BR10 BK10 RK10 BRK10
Indicator combination

Figure 5.20: Mean short profit made by standard and hierarchical agent

!
)

L L L L L L
B11 R11 K11 B12 R12 K12
Indicator combination

Mean maximum down-draft for standard (blue) and hierarchical (red) agents

x 10

I I I I I I I
B10 R10 K10 BR10 BK10 RK10 BRK10
Indicator combination

Figure 5.21: Mean down-draft for standard and hierarchical agent

Chapter 5. Experiments 54

results. The mean short profit is shown in figure 5.20 and si@pbears to mirror what
was seen in figure 5.18. The mean maximum down-draft is shovigure 5.21 and
does not reveal any consistent patterns. For some indisataps, the standard agent
has significantly less mean down-draft, whereas the revetage in other setups. The
difference appears to depend on the particular setup, and general statements can
be made.

The poor performance of the hierarchical agent is assumée tue to noise in
reward signals used to update the HQ-values. It may be thdtignarchical ‘memory’
does simply not help agents disambiguate market regime amg than their direct
observations. However, we consider this unlikely, sincefatend an example of a
trading problem where the hierarchical agent does have eantgage. It follows that
our design is preventing the hierarchical agent from olmgian advantage. Informal
observations found that reward recieved for choosing theesgoal set and next sub-
agent varied wildly. As a consequence, the hierarchicahsggmply seemed to be
converging on random goal sets and next subagents. If tlogithlign was altered so
that these reward signals are more consistent, the hiecatfadgent might outperform
the standard agent. It stands that some choices of goal deteat subagent must be
better, so it should be possible to design a reward funchianhreflects this.

5.3.2 Indicator combination experiment

Our agent is capable of using any combination of the threlenieal analysis indica-
tors described in section 4.1.2: Bollinger Bands, RSI oriRast Stochastic Oscillator
(KD). In this experiment we investigated which of these corabons are of value to
the agent. This experiment does not relate directly to theothesis, but highlights
some interesting behaviours that emerged from the stan@artbrcement learning
agent. The hierarchical agent was ignored for this expeartmé/e found that agents
with multiple indicators could make more profit than agentihwne or no indicators.
Dempster & Jones [7] made a similar observation. We alsoddbhat agents with
multiple indicators found more robust strategies than &gyeith one or no indicators;
these strategies made significantly more trades and madwitgr a wider range of
market conditions. This is a novel result, and provides amgd{e of an agent learning
strategies appropriate to the information it is given.

For each combination of the three indicators, we traineddif8rent agents. For
each technical analysis indicator present, a single sigprabwas generated. All other

Chapter 5. Experiments 55

and validation (red) data

)

Mean profit made on training (blue;

B R K BK
Indicator combination

Indicator combination

Figure 5.22: Mean profit made on training

(blue) and validation (red) sets Figure 5.23: Mean number of trades

parameters were fixed at the values found during paramesinge

A single short signal was used to keep the number of possiatkehobservations
low. If we limit the agent to a single short signal, then themtgvith all three indicators
only has 44-3-9-2 = 648 indicators, which is a much more manageable number.
Limiting the agent in this way therefore ensures that we ae#g the effects of giving
the agent more information, rather than the effects of ‘admiming’ the agent. The
value of combinations of short and long signals is inveséigan another experiment,
where the number of possible states is reduced by limitiegnilimber of technical
analysis indicators.

The mean profit for each combination is shown in figure 5.22 [Ekters B, R and
K respectively refer to Bollinger Bands, RSI and the FastBastic Oscillator (KD).
Note that the agents made more profit on the validation se@ppssed to the training
set, which would usually be the case. This is because theéatedn set contains more
rising market segments, and so is more favourable to ourtatpsign regardless of
which indicators are used. It also means that the distindietween the training and
validation set is meaningless here, so other indicatorgheseombined performance
on the training and validation sets.

It appears that agents using any two indicators in comlmngperformed better
than agents using any single indicator, although this ig significant for the agents
using Bollinger Bands and RSI or the agent using all threécatdrs. Figure 5.23
shows the average number of trades made by agents and rasgghgficant difference
between agents using different numbers of indicators.

A clear relationship is seen between the number of indisadod the number of
trades made; the agents using one or no indicators made dxeteto 100 trades

Chapter 5. Experiments 56

60

a0

30

20

Mean profit made on each segment of training and validation data

-30 ! ! ! ! I I I
B R K BR BK RK BRK

Indicator combination

Figure 5.24: Mean profit made on each training and validation market segment

on average, while the agents using two made between 150 dhdh@@ the agents
using all three indicators make almost 300. Note that thiisesaumber of trades made
over all the training and validation market segments, andesthe agents are forced to
close their position at the end of a segment, they must treléast 16 times. Thus, the
agents with no indicators made on averaged88- 16 = 52.08 voluntary trades, and
52.08/16= 3.26 voluntary trades per market segment. By comparison,gleta with
all three indicators made on average Z83- 16 = 267.75 voluntary trades; 183 per
market segment. The ‘logic’ of strategies found by agenisgusiore indicators was
therefore checked more often, and so we expect that thegegt's are more likely to
work on unseen data. This indicates some level of robustness

Figure 5.24 provides a clearer picture of how robust agesttategies are. Each
cluster of bars shows performance on the 16 market segm@misthe training and
validation datasets. The colours of the bars match the eslodigure 3.1; blue and red
respectively denote rising and falling market segment® ddents with no indicators
clearly struggle to make profit on falling markets. The agemith one indicator do a
little better, but still make the body of their profit on rigimarkets. Conversely, the
agents with two or more indicators do not appear to favodinfalor rising markets.

Figures 5.25 and 5.26 reveal weaknesses common to all adgegtse 5.25 com-
pares profit made on long and short positions. Clearly, ahégmake less profit from
short positions. This is not entirely unexpected, as disedi$n section 5.1.1.1. How-

Chapter 5. Experiments 57

sitions

Mean profit made from long (blue) and short (red) po
Mean maximum down-draft
) \

B R K BR BK RK BRK
Indicator combination

L L L L L L L
B R K BR BK RK BRK
Indicator combination

Figure 5.25: Mean profit made on long

(blue) and short (red) positions Figure 5.26: Mean maximum down-draft

ever, note that the agents using Bollinger Bands and RSIl tinrele indicators made
almost twice as much profit from short positions as agentsguesny one indicator. By
contrast, the profit made on long positions increases vthg.liThis suggests that the
primary advantage of having more indicators, or informatis the ability to make
money on short positions. Figure 5.26 shows mean maximumdiraft which is
fairly large, but does not seem to correlate to the numbenditators used. However,
the mean maximum down-draftft values reflect worse on thentsgeith one or no
indicators since they ultimately make less profit.

Finally, figure 5.27 compares the mean profit made by conwtrgiategies to
that made by the best strategies, which was used to prodecethler figures. The
convergent policies are significantly worse than the bebtips, suggesting that the
convergence of the algorithm could be improved considgraldloreover, the differ-
ence in performance seems worse for the agents using maoaios. For instance,
the convergent strategies of agents using just BollingaedBar RSI make more profit
than the strategies of agents using both.

5.3.3 Signal combination experiment

Our agent is capable of using six combinations of short and kgnals as detailed in
section4.1.2: SOLO, S1L0, S2L0, SOL1, S1L1, S2L1. Inthseement we investigate
which of these six combinations are of value to the agentifdhis experiment does
not relate directly to the hypothesis and ignores the hobiaal agent. We found that
giving agents long signals allowed them to make better sradeé increase their profits,
but did not seem to alter their fundamental strategies. Mgidagents an additional

Chapter 5. Experiments 58

350

= = N N w
o ol o a o
o o o o o
T T T T T
I I I I I

o
o
T
I

Mean profit made by convergent (blue) and best (red) strategies

B R K BR BK RK BRK
Indicator combination

Figure 5.27: Mean profit made by convergent (blue) and best (red) strategies

short signal dramatically changed the strategies theyd@nd increased the number
of trades they made. These are both novel results, and re@sthe idea that the agent
learns strategies appropriate to the information it is give

For each combination of short and long signals, we trainédifferent agents. A
single technical analysis indicator was used to generateignals: the Fast Stochastic
Oscillator (KD). All other parameters were fixed at the valfi@und during parameter
testing.

A single technical analysis indicator is used for the sanasaa that a single short
signal was used in the indicator combination experimenlimda the size of the obser-
vation space. We chose KD over BB or RSI simply because ithrag tiscreet states
instead of four, which further reduces the observation sp&therwise, the indicator
combination provided little reason for choosing one intbhcaver another. Using just
KD, we have a maximum of 3-3-9-2 = 486 states when two short and one long
signal are used.

Figure 5.28 shows the mean profit made by agents on the tgaamid validation
sets. The numbers next to S and L beneath each bar show howshartyand long
signals were used. Recall that we expected that increagimgy ¢he number of short
or long term signals would improve performance. Figure 3e&als that this is true
for the long signals. The three rightmost bars corresponagents trained with the
long signal. The first two of these are signficicantly highmert the corresponding bars

Chapter 5. Experiments 59

and validation (red) data
N w w
R 8 @
g S g

e)

Mean profit made on training (blu
5]
S

S0 Lo S1L0 s2L0 soL1 siL1 s2L1
Signal combination

S0LO s1L0 s2L0 soLL siL1 s2L1
Signal combination

Figure 5.28: Mean profit made on training

(blue) and validation (red) sets Figure 5.29: Mean number of trades

on the less. The last bar is not, but these agents were usirggsigmals than any other,
and so we may be seeing the effects of ‘overwhelming’. Thelteus for the agents
using two short signals are lower than the corresponding tmaragents using a single
short signal, which does not meet our expectations.

However, it is important to take the number of trades madegants into account
when evaluating performance. This is shown in figure 5.29reHeas see a similar
effect to what was seen in the indicator combination expenityincreasing the amount
of information causes the agents to make more trades. Haoytbeeffect of increasing
the number of short signals from one to two is far more dracnédan the effect of
adding the long signal. In fact, the effect of doing the laigensignificant.

The results support our reasons for including the additisrggals. We reasoned
that adding the second short term indicator would allow ég&mlearn a number of
technical analysis rules that involve changing signalsis Ehould allow then to de-
velop more complex strategies, which seems to be the casgthernumber of trades
increase dramatically when the second signal is added. ©adhtrary, we reasoned
that adding the long term indicator would enable the agepattally uncover the un-
derlying regime. While this should not fundamentally chanige agents’ strategies,
it should give them a better idea of how the market trans#tioetween observations.
This allows better trades to be made, which results in irsgdgrofit, as seen in fig-
ure 5.28.

Figure 5.30 shows how the agents perform on each segmene aghénket, and
provides further support for our view. Consider the perfanoe of the agents with one
short signal in the second and fifth clusters. Notice how timeldmental behaviour of
the agent changes when another short signal is added (tmirdiath clusters). The

Chapter 5. Experiments 60

each segment of training and validation data

Mean profit made on
| \

.
SoLo S1L0 s2L0 soL1 SiL1 s2L1
Signal combination

Figure 5.30: Mean profit made on each training and validation market segment

250

) and short (red) positions

Mean maximum down-draft
| |

Mean profit made from long (blue;

S0 Lo S1L0 S2L0
Signal combi

soLL siL1 s2L1
ination

.
SoLo S1L0 S2L0 soL1 SiL1 s2L1
Signal combination

Figure 5.31: Mean profit made from long

(blue) and short (red) positions Figure 5.32: Mean maximum down-draft

longest bars are now red instead of blue. Conversely, tlierdifce between the two
clusters with one short signal, which shows the effect ohgishe long signal, is less
pronounced. There are more taller bars, but the overall appee of the cluster is
similar.

We might take figure 5.30 to mean that the agents with two signials are mak-
ing more profit from short positions, since their clusterstain many tall red bars.
Figure 5.31 shows that this is not the case; all agents drenstke significantly less
profit from short positions. Figure 5.30 therefore revehi the agents with two short
positions are good at making money off long positions inrglimarkets. This is sup-
ported by noting that the longer red bars are soft red whiehtlae gently decreasing
segments with lots of ups and downs. This suggests a fairlyptex strategy with
good timing. As with the indicator combination experimefigure 5.31 shows that
increasing information has a greater effect on short proftswever, figure 5.32 has

Chapter 5. Experiments 61

Mean profit made by convergent (blue) and best (red) strategies

SO Lo S1L0 S2 L0 SO L1 SilL1 S21L1
Signal combination

Figure 5.33: Mean profit made by convergent (blue) and best (red) strategies

at least one significant feature not seen before. The agetit$wo short signals have
a large maximum down-draft. This suggests that the incceaaenber of trades made
by these agents results in strategies with higher risk.

Finally, let us consider how the convergent policies coragarthe best policies
we have been considering. Figure 5.33 again confirms thatdheergent policies are
significantly worse than the best policies, particularly fllee agents with two short
signals. In the previous experiment we speculated thatiffexehce in performance
increased with the amount of information given to the agédritis suggests that the
difference may be related to the number of trades the ageatsiaking, rather than
the amount of information.

5.3.4 Commission experiment

In this experiment, we investigate the effects of charghrgagent a realistic commis-
sion rate of 0.25% every time a position is opened or closemi€sion rates were ig-
nored in previous experiments since they obscure some aftieesting results noted
above. We found that comission rates had a dramatic negffeet on performance,
such that agents could not consitently outperform the ‘bog laold’ strategy. This
problem is common in novel algorithmic traders. However,als® found that agents
made fewer trades when comission rates were introducediding a further example

Chapter 5. Experiments 62

200

Mean profit made on training (blue) and validation (red) data

-50

.
K10 BR10 BRK10 K11 K12
Indicator setup

K10 BR10 BRK10 K11 K12
Indicator setup

Figure 5.34: Mean profit made on training

(blue) and validation (red) sets Figure 5.35: Mean number of trades

of the agent adapting to its situation.

The broker simulator was set to charge commission, and pegioce with six
different indicator setups was investigatefl-, K10, BR10, BRK10, K11, K132.
Each of these setups is intended to represent a number qfssittat were found to
produce similar performance in previous experiments.

Figure 5.34 shows the mean profit made by agents on the tgaamid validation
sets. Observe that the performance of agents trained wiithdicators and just the
Fast Stochastic Oscillator (KD) are similar. In fact, thagents are almost exclusively
finding the buy and hold strategy. Thus, the performancd keteby these agents can
be taken as a target level for the other agents. Unforunakeytarget is only surpassed
by the agent with all three indicators. Figure 5.35 is sonmevore encouraging. The
number of trades made by these agents is significantly lessthie equivalent agents
without commission (see sections 5.3.2 and 5.3.3). Foamt&, without commission,
the agents with all three technical analysis indicatorseradaverage 283.75 trades;
here they make just over 70. This indicates that the ageatadopting sensible strate-
gies and trading less to try and reduce commission costsortimfately, this is not
enough to offset the loss.

Figure 5.36 shows the mean profit made by agents on each nsadpetent from
the training and validation sets. Here we see that the agétiidong and short KD
indicators are failing to make money from declining markefkis stands in contrast
to the equivalent agents in the indicator scope experiméntiwwere able to average
a profit on all but one declining market segment. The profibesife other agents show
a similar drop in performance.

Figure 5.37 suggests why this might be. None of the agentaldesto average a

Chapter 5. Experiments 63

50
40
30
20

101

-10+

Mean profit made on each segment of training and validation data

—40 I I I I I
K10 BR10 BRK10 K11 K12

Indicator setup

Figure 5.36: Mean profit made on each training and validation market segment

200

e e
@ g @
3 8 3

Mean maximum down-draft
] 1 |

o

Mean profit made from long (blue) and short (red) positions

. . . . h
K10 BR10 BRK10 K11 K12
Indicator setup

. 1 I I .
K10 BR10 BRK10 K11 K12
Indicator setup

Figure 5.37: Mean profit made from long

(blue) and short (red) positions Figure 5.38: Mean maximum down-draft

Chapter 5. Experiments 64

16000

14000

12000

10000

8000

6000

4000

2000

Mean profit made by convergent (blue) and best (red) strategies

o

—-2000 1 1 1 1
K10 BR10 BRK10 K11 K12

Indicator setup

Figure 5.39: Mean profit made by convergent (blue) and best (red) strategies

profit from short positions. As explained in paragraph 513, making profit from
short positions requires good timing which requires rdéaharket signals. Therefore
it may be that the indicators provided to the agents are m&bive enough for profit
to be made when commission is ignored, but not when it is dexdu Here it would
be useful to look at the agents’ performance with multipldicators at multiple time
scales. Unfortunately, this is infeasible with our curragént design, due to the blow-
up of the observation space. An agent that could generakseltservation space might
be able to overcome this problem. Figure 5.38 shows thatmaxi down-drafts are
not significantly worse that those seen in previous expearigye¢hough they are worse
when considered in relation to the ultimate profit.

Finally, figure 5.39 shows how the performance of the corsetrgolicies com-
pares to the performance of the best policies. For three eirttlicator setups, the
convergent policies perform similarly to the best policie¢owever, this is not par-
ticularly significant, since these agents are mainly findimg trivial ‘buy and hold’
strategy. For the remaining three indicators, the convdrgelicies are significantly
worse, as in the previous experiments, Moreover, some aabars are causing the
agents to converge on policies that make a loss. This reafiium assertion that the
learning algorithm could be improved significantly. As robte section 5.3.3, the dif-
ference seems to be greater when the agents are making rades.tr

Chapter 5. Experiments 65

validation (green) and test (red) data

Mean profit made on training (blue), validation (green) and test (red) data

.
K10 BR10 BRK10 K11 K12
Indicator setup

Mean profit made on training (blue),

K10 BR10 BRK10 K11 K12
Indicator setup

Figure 5.41: Adjusted mean profit made on
Figure 5.40: Mean profit made on training training (blue), validation (green) and test

(blue), validation (green) and test (red) sets (red) sets

5.3.5 Unseen data experiment

In this experiment we tested the agent’s performance oneimdata. In our previous
tests and experiments, the agents were trained on thengadtsitaset and then tested
on both the training and validation datasets. To truly extduhe performance of our
agent, we must investigate its performance on unseen ddtée YWe validation dataset
is unseen to some degree, it was used for choosing paranetdies parameter test.
The test dataset, however, has not been used for anythingaaisdyenuinely unseen
data. We found that the agents without a commission chargkel coake a profit on
unseen data and agents trained with more indicators gaveebalanced performance
across the training, validation and test set. Agents withraraission cost performed
poorly across all datasets, and failed to outperform thedng/ hold strategy on any
unseen data. Finally, we found no difference between thfepeance of standard and
hiearchical agents on unseen data.

A sample of 128 agents was trained with the same six indicatups used in the
commisison experiment: -, K10, BR10, BRK10, K11, K12. We then recorded the
mean profit made by agents on the training, validation artditgaset. Other indicators
were ignored in this experiment, since the number of tradas @bserved to remain
consistent over different datasets, and other indicate®iound to be proportional
to profit.

Figure 5.40 shows the mean profit on the training, validadod test datasets.
The agents are making less profit on the test datasets whgdests that they are
performing worse on unseen data. However, we should aclaugel that our agent

Chapter 5. Experiments 66

en) and test (red) data

en) and test (red) data

training (blue), validation (gre

training (blue), validation (gre

usted mean profit made on

Adj
|
L
<
8

. . , . .
K10 BR10 BRK10 K11 K12
Indicator setup

sted mean profit made on

Adju
\

Figure 5.43: Adjusted mean profit made on
Figure 5.42: Mean profit made training training (blue), validation (green) and test

(blue), validation (green) and test (red) sets (red) sets

design tends to do better in increasing markets, regardfessategy. This is accounted
for by subtracting the profit made by the buy and hold strategy our agents’ mean
profit. Since the buy and hold strategy only makes a profit @anemsing markets, it
indicates how much the market increased in each datasetbtyhand hold strategy
respectively makes 49.1, 125.2 and -10.2 profit on the trginvalidation and test
datasets.

Figure 5.41 shows the adjusted profit and reveals a diffgretdre. Note that the
agents with the right four indicator setups are all able tesdbstaintially better than
the buy and hold strategy on all three datasets. In previopsranents we speculated
that agents trained with more information find more robusttegjies. That appears to
be the case here. The agents with the left two indicator sdtape less information,
and appear to have difficulty outperforming buy and hold anwhlidaiton set.

Figures 5.42 and 5.43 are the equivalent of figures 5.40 atii for agents that
were charged a 0.25% commission cost for trading. The ctamglg poor performance
on the test dataset in figure 5.42 is again a consequence effenamurable conditions
in the validation set. As above, we compensate for this byraating the profit made
by the buy and hold strategy. When comission is charged, tlgeahd hold strategy
respectively makes 23.81, 96.28 and -42.72 profit on thaitrgj validation and test
datasets. The adjusted profit is shown in figure 5.43. Nonkeagents were able to
outperform the buy and hold strategy on all datasets. Tippauis our idea that the
agents do not have enough information to deal with comnmssists.

Finally, in the hierarchical experiment, we noted that sovhe¢he hierarchical
agents tended to make more trades, and speculated thatighs tnanslate to more

Chapter 5. Experiments 67

i
®
o

160

'
i
o

=
n
o

=
o
o

®
o

o
o

N
o

N
o

Mean profit made by standard (blue) and hierarchical (red) agents on unseen data

o

K10 BR10 BRK10 K11 K12
Indicator setup

Figure 5.44. Mean profit made by standard (blue) and hierarchical (red) agents on

unseen data

robust strategies. If this is the case, then we should selei¢h@chical agent making
significantly higher profits than the standard agent on teedataset. However, this is
not seen in figure 5.44.

Chapter 6
Conclusion

In this dissertation we were motivated by the question of tiwiehierarchical rein-
forcement learning can outperform standard reinforcenearning on markets with
regime change. We showed that in a very simple scenario védreagent has no indi-
cators, a hierarchical agent can learn a policy that makee pofit than any policy
the standard agent can find. The robustness of a policy teastns indicators what-
soever is likely to be poor, so this is not a practical restlowever, it does show
that there do exist trading problems where the hierarclsitatture gives the agent an
advantage.

Unfortunately, our other comparisons between the profitertadthe standard and
hierarchical agent did not find any significant differencbehierarchical agent found
strategies that made slightly more trades under certaiditons. It was speculated
that these strategies may be more robust, and thereby peletter on unseen data.
However, no such effect was observed when the performanstanélard and hierar-
chical agents on unseen data was compared.

We can therefore conclude that, given our agent desigre iketo significant dif-
ference between performance of the standard and hieratcdgent. The poor perfor-
mance of the hierarchical agent was assumed to be causee Imyctinsistent nature
of the reward signals used by agents to select a goal and mlexg¢ent. Thus, a design
that reduces the noisiness of these reward signals mightte hierarchical agent
an advantage. A possible way of doing this might be to usegeiriia with different
reward functions. This might cause the subagents to leame mhistinctive policies
which gives them a clear advantage in different regimess Wuuld require substan-
tial alterations to the current algorithm.

Our research also found some interesting results that weedated to the hypoth-

68

Chapter 6. Conclusion 69

esis. Agents provided with two or more technical analysiidators were able to
achieve greater profits than agents with one or none, comfigiie results of Demp-
ster & Jones [7]. These agents had found strategies that madetrades, which we
speculated might be more robust. Indeed, agents with mdieators could make a
substantial profit on all three of our datasets.

Our agent design allows the agent to use its technical asahdicators to gener-
ate signals at different time scales. A long signal was ietlso that the agent could
identify the underlying market regime. The option of usimgptshort signals from
consecutive time steps was included so that the agent cotéaimally learn complex
technical analysis rules. Both of these design decisions yustified by our results.
Giving agents a long signal allowed them to make more profibeut making sig-
nificantly more trades. We speculated that the long signigldaerestore the Markov
property, so the agent had a better idea of how the markesitiamed, allowing it
to make better trades. On the contrary, giving agents twat Signals caused them
to find complex strategies which made many trades and cooliit pn noisy market
segments.

Charging agents a commission charge for trading caused tbemake fewer
trades. However, this was not enough to offset the charge sarthese agents gen-
erally failed to outperform the simple ‘buy and hold’ strgyeon both seen and unseen
data. As realistic traders must always pay a commission tlistindicates that our
strategies would have little merit in real world applicai$o It was noted that the agents
which were charged commission had difficulty making moneyrfrshort positions.
This led us to reason that the indicators provided to the @g&are not informative
enough to facilitate the complex trading strategies neé¢dedake money in the face
of commission charges. Thus, giving the agent an even greateber of indicators
might overcome this problem.

Unfortunately, our design meant that we could only give theras a limited num-
ber of indicators without causing the agents observati@tsgo become infeasibly
large. This meant that we did not investigate the most caraf@d indicator combi-
nations possible under our design, such as using all thobaial analysis indicators
to generate two short and one long signal. A modification afdasign that allowed
agents to generalise large observation spaces would allotw@mbinations to be in-
vestigated. Moreover, indicators other than Bollinger @arRSI and the Stochastic
Oscillator could also be investigated. Indicators coutsbdde used to generate signals
at a greater number of time scales, possibly longer tharidhg*week-scale indicator

Chapter 6. Conclusion 70

used here.

Another significant weakness in our design was the poor pedace of conver-
gent policies, which was demonstrated several times. Tifereince between the per-
formance of the best and convergent policies seemed to beegfer agents that traded
more often. This was assumed to be a result of the market hotviag a true Markov
process. It was hoped that the hierarchical structure wbalgd restore the Markov
property. Thus, if the design of our agent was changed sahledtierarchical struc-
ture did have an advantage, then convergence might imp/ternatively, there are
also many methods of improving convergence in non-Markoegsses in the existing
literature [19, 22] that could be incorporated.

The root of most of the design faults stems from the learnilggréhm, rather
than the chosen observation space. The use of thresholdsnotifie holding state
is unusual and seems promising. It was shown that agentsutithese thresholds
performed worse than agents with them. There were also @uéx@ results in the
informal threshold test where the agent learns dramayichfferent policies for dif-
ferent upper thresholds. We did not examine this phenomémoiner. Our obser-
vation space can be uncoupled from the reinforcement legraigorithm, so other
approaches could be used to investigate it. Since our giestean be represented
by a binary bit string, some sort of genetic algorithm couédabgood alternative to
reinforcement learning.

In light of our hypothesis, the key finding of this work is ttahierarchical agent
can outperform a standard agent in a trivial case. It is tegvke that we could could
not produce more results which illuminate our hypothesis this work has also pro-
duced several results that are interesting from other petsgs. Our results showing
how the agent can tailor its strategies to the informati@ngiven provide a convincing
example of an agent that learns to trade, rather than belddptov to trade. Some of
these results reaffirm what has been noted by other resesyti others, particularly
our examples of agents adapting their strategies, are mesalts for reinforcement
learning.

Bibliography

[1] Cfd trading from gni touch, August 2008. http://www.gmiichcfds.com/.

[2] Do the error bars overlap? not a very helpful questionygést 2008.
http://www.graphpad.com/ library/ BiostatsSimple/ egi55.htm.

[3] g markets - cfds, forex, indices, August 2008. httpuAw.igmarkets.co.uk/.
[4] Russell indexes (russell.com), August 2008. http:Mwrussell.com/indexes/.

[5] R. G. Bates, M. A. H. Dempster, and Y. Romahi. Evolutigneginforcement
learning in fx order book and order flow analysis. Pnoceedings 2003 IEEEE
International Conference on Computation Intelligence for Financial Engineer-
ing, pages 355—-362, 2003.

[6] P. Dayan. The convergence of TX)(for generalA. Machine Learning, 8:341—
362, 1992.

[7] M. A. H. Dempster and M. C. Jones. A real-time adaptiveling system using
genetic programmingQuantitative Finance, pages 397-413, 2001.

[8] M. A. H. Dempster and V. Leemans. An automated fx tradiggteam using
adaptive reinforcement learningxpert Systems with Applications, 30:543-552,
2006.

[9] M. A. H. Dempster, T. Payne, Y. Romahi, and G. Thompson.m@uotational
learning techniques for intraday fx trading using popukxhnical indicators.
|EEE Transactions on Neural Networks, 12(4), 2001.

[10] M. A. H. Dempster and Y. Romahi. Intraday fx trading: arokitionary rein-
forcement learning approachDEAL 2002 (Lecture Notes in Computer Science
2412), pages 347-358, 2002.

71

Bibliography 72

[11] X. Gao and L. Chan. An algorithm for trading and portibinanagement us-
ing g-learning and sharpe ratio maximization. Rroceedings of International
Conference on Neural Information Processing, ICONIP 2000, pages 832-837,
2000.

[12] J. Hamilton. Regime-switching models. New Palgrave Dictionary of Eco-
nomics and Law, 2nd Edition. Palgrave, 2008.

[13] S. Hasinoff. Reinforcement learning for problems witkdden state. Technical
report, University of Toronto, 2002.

[14] K. Kim. Electronic and Algorithmic Trading Technology. Academic Press (Else-
vier), 2007.

[15] B. Lebaron. Technical trading rule profitability andéagn exchange interven-
tion. Journal of International Economics, 49(1):125-43, 1999.

[16] J. Lee and J. O. A multi-agent g-learning framework fptimizing stock trading
systems. IrProceedings of the 13th International Conference on Database and
Expert Systems Applications, volume 2453, pages 153-162, 2002.

[17] A. Lo and A. MacKinlay. Stock market prices do not follo@ndom walks:
Evidence from a simple specification teBReview of Financial Studies, 1:41—66,
1988.

[18] A. Lo and A. MacKinlay. A Non-Random Walk Down Wall Street. Princeton
University Press, Princeton, NJ, 1999.

[19] J. Moody and M. Saffell. Learning to trade via directri@ircementl EEE Trans-
actions on Neural Networks, 12(4):875-889, 2001.

[20] R. Neuneier. Optimal asset allocation using adaptiyeaghic programming.
Advancesin Neural Information Processing Systems, 8:952—-958, 1996.

[21] J. O, J. Lee, W. J. Lee, and B. Zhang. Adaptive stock trgeliith dynamic asset
allocation using reinforcement learningnformation Sciences, 176:2121-2147,
2006.

[22] D. Ormoneit and P. Glynn. Kernel-based reinforcemeatiing in average-cost
problems: An application to optimal portfolio choicAdvances in Neural Infor-
mation Processing Systems, 13:1068-1074, 2000.

Bibliography 73

[23] H. Osada and S. Fujita. CHQ: A multi-agent reinforcemiearning scheme
for partially observable markov decision processéklICE - Transactions on
Information and Systems, E88-D(5), 2005.

[24] P. RefenesNeural Networksin the Capital Markets. John Wiley & Sons, 1995.
[25] J. SchwagerGetting Started In Technical Analysis. John Wiley and Sons, 1999.

[26] H. Subramanian. Evolutionary algorithms in optimipatof technical rules for
automated stock trading. Master’s thesis, The Universitfexas at Austin,
2004.

[27] H. Subramanian, S. Ramamoorthy, P. Stone, and B. KslipBesigning safe,
profitable auotmated stock trading agents using evolutjoalgorithms. InPro-
ceedings of the Genetic and Evolutionary Computation Conference, 2006.

[28] S. Sutton and A. BartoReinforcement Learning: An Introduction. MIT Press,
1998.

[29] M. Taylor and H. Allen. The use of technical analysis andign exchange mar-
kets. Journal of International Money Finance, 11:304—-314, 1992.

[30] M. Waldrop. Computers amplify black mondagiience, 238(4827):602—-604,
1987.

[31] C. Watkins and P. Dayan. Technical note: Q-learniMgchine Learning, 8:279—
292,1992.

[32] M. Wiering and J. Schmidhuber. HQ-learnir&daptive Behavior, 6(2):219-246,
1997.

